Page 1

Displaying 1 – 18 of 18

Showing per page

Effective local finite generation of multiplier ideal sheaves

Dan Popovici (2010)

Annales de l’institut Fourier

Let ϕ be a psh function on a bounded pseudoconvex open set Ω n , and let ( m ϕ ) be the associated multiplier ideal sheaves, m . Motivated by global geometric issues, we establish an effective version of the coherence property of ( m ϕ ) as m + . Namely, given any B Ω , we estimate the asymptotic growth rate in m of the number of generators of ( m ϕ ) | B over 𝒪 Ω , as well as the growth of the coefficients of sections in Γ ( B , ( m ϕ ) ) with respect to finitely many generators globally defined on Ω . Our approach relies on proving asymptotic integral...

Equidistribution estimates for Fekete points on complex manifolds

Nir Lev, Joaquim Ortega-Cerdà (2016)

Journal of the European Mathematical Society

We study the equidistribution of Fekete points in a compact complex manifold. These are extremal point configurations defined through sections of powers of a positive line bundle. Their equidistribution is a known result. The novelty of our approach is that we relate them to the problem of sampling and interpolation on line bundles, which allows us to estimate the equidistribution of the Fekete points quantitatively. In particular we estimate the Kantorovich–Wasserstein distance of the Fekete points...

Equidistribution towards the Green current

Vincent Guedj (2003)

Bulletin de la Société Mathématique de France

Let f : k k be a dominating rational mapping of first algebraic degree λ 2 . If S is a positive closed current of bidegree ( 1 , 1 ) on k with zero Lelong numbers, we show – under a natural dynamical assumption – that the pullbacks λ - n ( f n ) * S converge to the Green current T f . For some families of mappings, we get finer convergence results which allow us to characterize all f * -invariant currents.

Equidistribution towards the Green current for holomorphic maps

Tien-Cuong Dinh, Nessim Sibony (2008)

Annales scientifiques de l'École Normale Supérieure

Let f be a non-invertible holomorphic endomorphism of a projective space and f n its iterate of order n . We prove that the pull-back by f n of a generic (in the Zariski sense) hypersurface, properly normalized, converges to the Green current associated to f when n tends to infinity. We also give an analogous result for the pull-back of positive closed ( 1 , 1 ) -currents and a similar result for regular polynomial automorphisms of  k .

Équidistribution vers le courant de Green

Frédéric Protin (2015)

Annales Polonici Mathematici

We establish an equidistribution result for the pull-back of a (1,1)-closed positive current in ℂ² by a proper polynomial map of small topological degree. We also study convergence at infinity on good compactifications of ℂ². We make use of a lemma that enables us to control the blow-up of some integrals in the neighborhood of a big logarithmic singularity of a plurisubharmonic function. Finally, we discuss the importance of the properness hypothesis, and we give some results in the case where this...

Extendible bases and Kolmogorov problem on asymptotics of entropy and widths of some class of analytic functions

Vyacheslav Zakharyuta (2011)

Annales de la faculté des sciences de Toulouse Mathématiques

Let K be a compact set in an open set D on a Stein manifold Ω of dimension n . We denote by H D the Banach space of all bounded and analytic in D functions endowed with the uniform norm and by A K D a compact subset of the space C K consisted of all restrictions of functions from the unit ball 𝔹 H D . In 1950ies Kolmogorov posed a problem: does ε A K D τ ln 1 ε n + 1 , ε 0 , where ε A K D is the ε -entropy of the compact A K D . We give here a survey of results concerned with this problem and a related problem on the strict asymptotics of Kolmogorov diameters...

Extension and lacunas of solutions of linear partial differential equations

Uwe Franken, Reinhold Meise (1996)

Annales de l'institut Fourier

Let K Q be compact, convex sets in n with K and let P ( D ) be a linear, constant coefficient PDO. It is characterized in various ways when each zero solution of P ( D ) in the space ( K ) of all C -functions on K extends to a zero solution in ( Q ) resp. in ( n ) . The most relevant characterizations are in terms of Phragmén-Lindelöf conditions on the zero variety of P in n and in terms of fundamental solutions for P ( D ) with lacunas.

Extreme plurisubharmonic singularities

Alexander Rashkovskii (2012)

Annales Polonici Mathematici

A plurisubharmonic singularity is extreme if it cannot be represented as the sum of non-homothetic singularities. A complete characterization of such singularities is given for the case of homogeneous singularities (in particular, those determined by generic holomorphic mappings) in terms of decomposability of certain convex sets in ℝⁿ. Another class of extreme singularities is presented by means of a notion of relative type.

Currently displaying 1 – 18 of 18

Page 1