Convergence of formal invertible CR mappings between minimal holomorphically nondegenerate real analytic hypersurfaces.
The aim of this paper is to investigate n-dimensional real submanifolds of complex manifolds in the case when the maximal holomorphic tangent space is (n-1)-dimensional. In particular, we give some examples and we consider the Levi form on these submanifolds, especially when the ambient space is a complex space form. Moreover, we show that on some remarkable class of real hypersurfaces of complex space forms, the Levi form cannot vanish identically.
Si stabiliscono due condizioni sufficienti per un germe di ipersuperficie reale di classe in affinchè esistano coordinate olomorfe rispetto alle quali l'ipersuperficie risulti essere il luogo di zeri di una funzione di variabili e sia minimale rispetto a questa proprietà. In altre parole si vuole che l'ipersuperficie, a meno di una trasformazione bi-olomorfa, sia l’unione di sottovarietà lineari complesse, parallele di dimensione .
We establish a lower estimate for the Kobayashi-Royden infinitesimal pseudometric on an almost complex manifold admitting a bounded strictly plurisubharmonic function. We apply this result to study the boundary behaviour of the metric on a strictly pseudoconvex domain in and to give a sufficient condition for the complete hyperbolicity of a domain in .
We study effectively the Cartan geometry of Levi-nondegenerate C 6-smooth hypersurfaces M 3 in ℂ2. Notably, we present the so-called curvature function of a related Tanaka-type normal connection explicitly in terms of a graphing function for M, which is the initial, single available datum. Vanishing of this curvature function then characterizes explicitly the local biholomorphic equivalence of such M 3 ⊂ ℂ2 to the Heisenberg sphere ℍ3, such M’s being necessarily real analytic.
Let be a complex manifold, a generic submanifold of , the real underlying manifold to . Let be an open subset of with analytic, a complexification of . We first recall the notion of -tuboid of and of and then give a relation between; we then give the corresponding result in terms of microfunctions at the boundary. We relate the regularity at the boundary for to the extendability of functions on to -tuboids of . Next, if has complex dimension 2, we give results on extension...
We define the notion of CR equivalence for Levi-flat foliations and compare in a local setting these foliations to their linear parts. We study also the situation where the foliation has a first integral ; a condition is given so that this integral is the real part of a holomorphic function.