Quasiconformality of pseudo-conformal transformations and deformations of hypersurfaces in C...
We will classify -dimensional real submanifolds in which have a set of parabolic complex tangents of real dimension . All such submanifolds are equivalent under formal biholomorphisms. We will show that the equivalence classes under convergent local biholomorphisms form a moduli space of infinite dimension. We will also show that there exists an -dimensional submanifold in such that its images under biholomorphisms , , are not equivalent to via any local volume-preserving holomorphic...
Lee, Kim and Suh (2012) gave a characterization for real hypersurfaces of Type in complex two plane Grassmannians with a commuting condition between the shape operator and the structure tensors and for in . Motivated by this geometrical notion, in this paper we consider a new commuting condition in relation to the shape operator and a new operator induced by two structure tensors and . That is, this commuting shape operator is given by . Using this condition, we prove that...
Let M be an open subset of a compact strongly pseudoconvex hypersurface {ρ = 0} defined by M = D × Cn-m ∩ {ρ = 0}, where 1 ≤ m ≤ n-2, D = {σ(z1, ..., zm) < 0} ⊂ Cm is strongly pseudoconvex in Cm. For ∂b closed (0, q) forms f on M, we prove the semi-global existence theorem for ∂b if 1 ≤ q ≤ n-m-2, or if q = n - m - 1 and f satisfies an additional “moment condition”. Most importantly, the solution operator satisfies Lp estimates for 1 ≤ p ≤ ∞ with p = 1 and ∞ included.
We study the regularity problem for Cauchy Riemann maps between hypersurfaces in Cn. We prove that a continuous Cauchy Riemann map between two smooth C∞ pseudoconvex decoupled hypersurfaces of finite D'Angelo type is of class C∞.
We give a special normal form for a non-semiquadratic hyperbolic CR-manifold M of codimension 2 in ℂ⁴, i.e., a construction of coordinates where the equation of M satisfies certain conditions. The coordinates are determined up to a linear coordinate change.