Displaying 181 – 200 of 314

Showing per page

On the apostol-bernoulli polynomials

Qiu-Ming Luo (2004)

Open Mathematics

In the present paper, we obtain two new formulas of the Apostol-Bernoulli polynomials (see On the Lerch Zeta function. Pacific J. Math., 1 (1951), 161–167.), using the Gaussian hypergeometric functions and Hurwitz Zeta functions respectively, and give certain special cases and applications.

On the asymptotic expansion of the Airy function

Fausto Segala (1999)

Bollettino dell'Unione Matematica Italiana

Si prova una nuova formula di rappresentazione per la famosa funzione di Airy. Ne viene data applicazione per la determinazione di certi bounds significativi per la funzione stessa.

On the complex geometry of invariant domains in complexified symmetric spaces

Karl-Hermann Neeb (1999)

Annales de l'institut Fourier

Let M = G / H be a real symmetric space and 𝔤 = 𝔥 + 𝔮 the corresponding decomposition of the Lie algebra. To each open H -invariant domain D 𝔮 i 𝔮 consisting of real ad-diagonalizable elements, we associate a complex manifold Ξ ( D 𝔮 ) which is a curved analog of a tube domain with base D 𝔮 , and we have a natural action of G by holomorphic mappings. We show that Ξ ( D 𝔮 ) is a Stein manifold if and only if D 𝔮 is convex, that the envelope of holomorphy is schlicht and that G -invariant plurisubharmonic functions correspond to convex H -invariant...

On the composition structure of the twisted Verma modules for 𝔰𝔩 ( 3 , )

Libor Křižka, Petr Somberg (2015)

Archivum Mathematicum

We discuss some aspects of the composition structure of twisted Verma modules for the Lie algebra 𝔰𝔩 ( 3 , ) , including the explicit structure of singular vectors for both 𝔰𝔩 ( 3 , ) and one of its Lie subalgebras 𝔰𝔩 ( 2 , ) , and also of their generators. Our analysis is based on the use of partial Fourier tranform applied to the realization of twisted Verma modules as D -modules on the Schubert cells in the full flag manifold for SL ( 3 , ) .

On the compound Poisson-gamma distribution

Christopher Withers, Saralees Nadarajah (2011)

Kybernetika

The compound Poisson-gamma variable is the sum of a random sample from a gamma distribution with sample size an independent Poisson random variable. It has received wide ranging applications. In this note, we give an account of its mathematical properties including estimation procedures by the methods of moments and maximum likelihood. Most of the properties given are hitherto unknown.

On the computation of Aden functions

Peter Maličký, Marianna Maličká (1991)

Applications of Mathematics

The paper deals with the computation of Aden functions. It gives estimates of errors for the computation of Aden functions by downward reccurence.

Currently displaying 181 – 200 of 314