On chaos in difference and differential-difference equations
In a simple FitzHugh-Nagumo neuronal model with one fast and two slow variables, a sequence of period-doubling bifurcations for small-scale oscillations precedes the transition into the spiking regime. For a wide range of values of the timescale separation parameter, this scenario is recovered numerically. Its relation to the singularly perturbed integrable system is discussed.
In the paper, a possible characterization of a chaotic behavior for the generalized semiflows in finite time is presented. As a main result, it is proven that under specific conditions there is at least one trajectory of generalized semiflow, which lies inside an arbitrary covering of the solution set. The trajectory mutually connects each subset of the covering. A connection with symbolic dynamical systems is mentioned and a possible numerical method of analysis of dynamical behavior is outlined....
A complete solution of an implicit second order ordinary differential equation is defined by an immersive two-parameter family of geometric solutions on the equation hypersurface. We show that a completely integrable equation is either of Clairaut type or of first order type. Moreover, we define a complete singular solution, an immersive one-parameter family of singular solutions on the contact singular set. We give conditions for existence of a complete solution and a complete singular solution...
In this paper, we study the motion planning problem for generic sub-riemannian metrics of co-rank one. We give explicit expressions for the metric complexity (in the sense of Jean [10, 11]), in terms of the elementary invariants of the problem. We construct asymptotic optimal syntheses. It turns out that among the results we show, the most complicated case is the 3-dimensional. Besides the generic case, we study some non-generic generalizations in the analytic case.
In this paper, we study the motion planning problem for generic sub-Riemannian metrics of co-rank one. We give explicit expressions for the metric complexity (in the sense of Jean [CITE]), in terms of the elementary invariants of the problem. We construct asymptotic optimal syntheses. It turns out that among the results we show, the most complicated case is the 3-dimensional. Besides the generic C∞ case, we study some non-generic generalizations in the analytic case.
Bounds on the spectrum of the Schur complements of subdomain stiffness matrices with respect to the interior variables are key ingredients in the analysis of many domain decomposition methods. Here we are interested in the analysis of floating clusters, i.e. subdomains without prescribed Dirichlet conditions that are decomposed into still smaller subdomains glued on primal level in some nodes and/or by some averages. We give the estimates of the regular condition number of the Schur complements...