Displaying 281 – 300 of 1662

Showing per page

On Chaotic Subthreshold Oscillations in a Simple Neuronal Model

M. Zaks (2010)

Mathematical Modelling of Natural Phenomena

In a simple FitzHugh-Nagumo neuronal model with one fast and two slow variables, a sequence of period-doubling bifurcations for small-scale oscillations precedes the transition into the spiking regime. For a wide range of values of the timescale separation parameter, this scenario is recovered numerically. Its relation to the singularly perturbed integrable system is discussed.

On characterization of the solution set in case of generalized semiflow

Zdeněk Beran (2009)

Kybernetika

In the paper, a possible characterization of a chaotic behavior for the generalized semiflows in finite time is presented. As a main result, it is proven that under specific conditions there is at least one trajectory of generalized semiflow, which lies inside an arbitrary covering of the solution set. The trajectory mutually connects each subset of the covering. A connection with symbolic dynamical systems is mentioned and a possible numerical method of analysis of dynamical behavior is outlined....

On complete solutions and complete singular solutions of second order ordinary differential equations

Masatomo Takahashi (2007)

Colloquium Mathematicae

A complete solution of an implicit second order ordinary differential equation is defined by an immersive two-parameter family of geometric solutions on the equation hypersurface. We show that a completely integrable equation is either of Clairaut type or of first order type. Moreover, we define a complete singular solution, an immersive one-parameter family of singular solutions on the contact singular set. We give conditions for existence of a complete solution and a complete singular solution...

On complexity and motion planning for co-rank one sub-riemannian metrics

Cutberto Romero-Meléndez, Jean Paul Gauthier, Felipe Monroy-Pérez (2004)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we study the motion planning problem for generic sub-riemannian metrics of co-rank one. We give explicit expressions for the metric complexity (in the sense of Jean [10, 11]), in terms of the elementary invariants of the problem. We construct asymptotic optimal syntheses. It turns out that among the results we show, the most complicated case is the 3-dimensional. Besides the generic C case, we study some non-generic generalizations in the analytic case.

On complexity and motion planning for co-rank one sub-Riemannian metrics

Cutberto Romero-Meléndez, Jean Paul Gauthier, Felipe Monroy-Pérez (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we study the motion planning problem for generic sub-Riemannian metrics of co-rank one. We give explicit expressions for the metric complexity (in the sense of Jean [CITE]), in terms of the elementary invariants of the problem. We construct asymptotic optimal syntheses. It turns out that among the results we show, the most complicated case is the 3-dimensional. Besides the generic C∞ case, we study some non-generic generalizations in the analytic case.

On conditioning of Schur complements of H-TFETI clusters for 2D problems governed by Laplacian

Petr Vodstrčil, Jiří Bouchala, Marta Jarošová, Zdeněk Dostál (2017)

Applications of Mathematics

Bounds on the spectrum of the Schur complements of subdomain stiffness matrices with respect to the interior variables are key ingredients in the analysis of many domain decomposition methods. Here we are interested in the analysis of floating clusters, i.e. subdomains without prescribed Dirichlet conditions that are decomposed into still smaller subdomains glued on primal level in some nodes and/or by some averages. We give the estimates of the regular condition number of the Schur complements...

Currently displaying 281 – 300 of 1662