Fifth-order numerical methods for heat equation subject to a boundary integral specification.
In the paper we give an analogue of the Filippov Lemma for the second order differential inclusions with the initial conditions y(0) = 0, y′(0) = 0, where the matrix A ∈ ℝd×d and multifunction is Lipschitz continuous in y with a t-independent constant l. The main result is the following: Assume that F is measurable in t and integrably bounded. Let y 0 ∈ W 2,1 be an arbitrary function fulfilling the above initial conditions and such that where p 0 ∈ L 1[0, 1]. Then there exists a solution y ∈ W 2,1...
In the paper we give an analogue of the Filippov Lemma for the fourth order differential inclusions y = y”” - (A² + B²)y” + A²B²y ∈ F(t,y), (*) with the initial conditions y(0) = y’(0) = y”(0) = y”’(0) = 0, (**) where the matrices are commutative and the multifunction is Lipschitz continuous in y with a t-independent constant l < ||A||²||B||². Main theorem. Assume that y₀ ∈ W4,1
Motivated by potential applications to partial differential equations, we develop a theory of fine scales of decay rates for operator semigroups. The theory contains, unifies, and extends several notable results in the literature on decay of operator semigroups and yields a number of new ones. Its core is a new operator-theoretical method of deriving rates of decay combining ingredients from functional calculus and complex, real and harmonic analysis. It also leads to several results of independent...
In this paper, we investigate the growth of solutions of a certain class of linear differential equation where the coefficients are analytic functions in the closed complex plane except at a finite singular point. For that, we will use the value distribution theory of meromorphic functions developed by Rolf Nevanlinna with adapted definitions.