Displaying 21 – 40 of 185

Showing per page

Filippov Lemma for certain second order differential inclusions

Grzegorz Bartuzel, Andrzej Fryszkowski (2012)

Open Mathematics

In the paper we give an analogue of the Filippov Lemma for the second order differential inclusions with the initial conditions y(0) = 0, y′(0) = 0, where the matrix A ∈ ℝd×d and multifunction is Lipschitz continuous in y with a t-independent constant l. The main result is the following: Assume that F is measurable in t and integrably bounded. Let y 0 ∈ W 2,1 be an arbitrary function fulfilling the above initial conditions and such that where p 0 ∈ L 1[0, 1]. Then there exists a solution y ∈ W 2,1...

Filippov Lemma for matrix fourth order differential inclusions

Grzegorz Bartuzel, Andrzej Fryszkowski (2014)

Banach Center Publications

In the paper we give an analogue of the Filippov Lemma for the fourth order differential inclusions y = y”” - (A² + B²)y” + A²B²y ∈ F(t,y), (*) with the initial conditions y(0) = y’(0) = y”(0) = y”’(0) = 0, (**) where the matrices A , B d × d are commutative and the multifunction F : [ 0 , 1 ] × d c l ( d ) is Lipschitz continuous in y with a t-independent constant l < ||A||²||B||². Main theorem. Assume that F : [ 0 , 1 ] × d c l ( d ) i s m e a s u r a b l e i n t a n d i n t e g r a b l y b o u n d e d . L e t y₀ ∈ W4,1 b e a n a r b i t r a r y f u n c t i o n s a t i s f y i n g ( * * ) a n d s u c h t h a t ...

Fine scales of decay of operator semigroups

Charles J. K. Batty, Ralph Chill, Yuri Tomilov (2016)

Journal of the European Mathematical Society

Motivated by potential applications to partial differential equations, we develop a theory of fine scales of decay rates for operator semigroups. The theory contains, unifies, and extends several notable results in the literature on decay of operator semigroups and yields a number of new ones. Its core is a new operator-theoretical method of deriving rates of decay combining ingredients from functional calculus and complex, real and harmonic analysis. It also leads to several results of independent...

Finite and infinite order of growth of solutions to linear differential equations near a singular point

Samir Cherief, Saada Hamouda (2021)

Mathematica Bohemica

In this paper, we investigate the growth of solutions of a certain class of linear differential equation where the coefficients are analytic functions in the closed complex plane except at a finite singular point. For that, we will use the value distribution theory of meromorphic functions developed by Rolf Nevanlinna with adapted definitions.

Currently displaying 21 – 40 of 185