Necessary and sufficient conditions for oscillatory behaviour of solutions of a forced nonlinear neutral equation of first order with positive and negative coefficients
In this research we establish necessary and sufficient conditions for the stability of the zero solution of scalar Volterra integro-dynamic equation on general time scales. Our approach is based on the construction of suitable Lyapunov functionals. We will compare our findings with known results and provides application to quantum calculus.
In this paper the authors give necessary and sufficient conditions for the oscillation of solutions of nonlinear delay difference equations of Emden– Fowler type in the form , where is a quotient of odd positive integers, in the superlinear case and in the sublinear case .
An optimal control problem is studied for a Lotka-Volterra system of three differential equations. It models an ecosystem of three species which coexist. The species are supposed to be separated from each others. Mathematically, this is modeled with the aid of two control variables. Some necessary conditions of optimality are found in order to maximize the total number of individuals at the end of a given time interval.
We obtain an existence-uniqueness result for a second order Neumann boundary value problem including cases where the nonlinearity possibly crosses several points of resonance. Optimal and Schauder fixed points methods are used to prove this kind of results.