Criteria of property for third order superlinear differential equations
Previous Page 20
Anton Škerlík (1993)
Mathematica Slovaca
Huffstutler, R.G., Smith, L.D., Liu, Ya Yin (1972)
Portugaliae mathematica
Vitrichenko, I. (1997)
Memoirs on Differential Equations and Mathematical Physics
Vitrichenko, I. (1997)
Memoirs on Differential Equations and Mathematical Physics
Vieri Benci, Paul H. Rabinowitz (1979)
Inventiones mathematicae
Mawhin, Jean (1986)
Equadiff 6
Jan Eisner, Jan Žilavý (2023)
Archivum Mathematicum
We show the location of so called critical points, i.e., couples of diffusion coefficients for which a non-trivial solution of a linear reaction-diffusion system of activator-inhibitor type on an interval with Neumann boundary conditions and with additional non-linear unilateral condition at one or two points on the boundary and/or in the interior exists. Simultaneously, we show the profile of such solutions.
Philippe Robba (1973/1974)
Groupe de travail d'analyse ultramétrique
Barnabas Garay (1990)
Studia Mathematica
Znojil, Miloslav (2009)
SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]
Bendjeddou, Ahmed, Cheurfa, Rachid (2011)
Electronic Journal of Differential Equations (EJDE) [electronic only]
Herceg, Dragoslav, Surla, Katarina, Rapajić, Sanja (1998)
Novi Sad Journal of Mathematics
István Ecsedi, Ákos József Lengyel (2015)
Curved and Layered Structures
Elastic two-layer curved composite beam with partial shear interaction is considered. It is assumed that each curved layer separately follows the Euler-Bernoulli hypothesis and the load slip relation for the flexible shear connection is a linear relationship. The curved composite beam at one of the end cross sections is fixed and the other end cross section is subjected by a concentrated radial load. Two cases are considered. In the first case the loaded end cross section is closed by a rigid plate...
Zlámal, Miloš (1973)
Proceedings of Equadiff III
B. Vrdoljak (1980)
Matematički Vesnik
Emmanuel Paul (1995)
Annales de l'institut Fourier
On construit un transport transverse aux fibres d’une fonction multivaluée de type ( complexes), à l’origine de . Ce transport est unique à isotopie près. On en déduit l’existence de voisinages réguliers dans lesquels les fibres sont toutes difféomorphes (voire dans un cas quasi-homogène, analytiquement difféomorphes). On obtient également une généralisation de la notion de monodromie. On calcule enfin l’homologie évanescente de la fibre-type, en précisant le gradué qui lui est associé.
Crâşmăreanu, Mircea (2002)
Balkan Journal of Geometry and its Applications (BJGA)
Previous Page 20