Solutions to a class of nonlinear differential equations of fractional order.
2000 Mathematics Subject Classification: 45G15, 26A33, 32A55, 46E15.Schauder's fixed point theorem is used to establish an existence result for an infinite system of singular integral equations in the form: (1) xi(t) = ai(t)+ ∫t0 (t − s)− α (s, x1(s), x2(s), …) ds, where i = 1,2,…, α ∈ (0,1) and t ∈ I = [0,T]. The result obtained is applied to show the solvability of an infinite system of differential equation of fractional orders.
In this paper, we consider a fractional impulsive boundary value problem on infinite intervals. We obtain the existence, uniqueness and computational method of unbounded positive solutions.
The stability of the zero solution of a nonlinear nonautonomous Caputo fractional differential equation is studied using Lyapunov-like functions. The novelty of this paper is based on the new definition of the derivative of a Lyapunov-like function along the given fractional equation. Comparison results using this definition for scalar fractional differential equations are presented. Several sufficient conditions for stability, uniform stability and asymptotic uniform stability, based on the new...
This paper analyzes the BIBO stability of fractional exponential delay systems which are of retarded or neutral type. Conditions ensuring stability are given first. As is the case for the classical class of delay systems these conditions can be expressed in terms of the location of the poles of the system. Then, in view of constructing robust BIBO stabilizing controllers, explicit expressions of coprime and Bézout factors of these systems are determined. Moreover, nuclearity is analyzed in a particular...
MSC 2010: 26A33, 34A08, 34K37
In this article, we present a new method for converting the boundary value problems for impulsive fractional differential systems involved with the Riemann-Liouville type derivatives to integral systems, some existence results for solutions of a class of boundary value problems for nonlinear impulsive fractional differential systems at resonance case and non-resonance case are established respectively. Our analysis relies on the well known Schauder’s fixed point theorem and coincidence degree theory....
In this paper we study existence and uniqueness of solutions for a system consisting from fractional differential equations of Riemann-Liouville type subject to nonlocal Erdélyi-Kober fractional integral conditions. The existence and uniqueness of solutions is established by Banach’s contraction principle, while the existence of solutions is derived by using Leray-Schauder’s alternative. Examples illustrating our results are also presented.
In this paper, we study a kind of fractional differential system with impulsive effect and find the formula of general solution for the impulsive fractional-order system by analysis of the limit case (as impulse tends to zero). The obtained result shows that the deviation caused by impulses for fractional-order system is undetermined. An example is also provided to illustrate the result.
We use the Laplace transform method to solve certain families of fractional order differential equations. Fractional derivatives that appear in these equations are defined in the sense of Caputo fractional derivative or the Riemann-Liouville fractional derivative. We first state and prove our main results regarding the solutions of some families of fractional order differential equations, and then give examples to illustrate these results. In particular, we give the exact solutions for the vibration...
In this work, the fractional Lie symmetry method is applied for symmetry analysis of time fractional Kupershmidt equation. Using the Lie symmetry method, the symmetry generators for time fractional Kupershmidt equation are obtained with Riemann-Liouville fractional derivative. With the help of symmetry generators, the fractional partial differential equation is reduced into the fractional ordinary differential equation using Erdélyi-Kober fractional differential operator. The conservation laws are...
We investigate the fractional differential equation u″ + A c D α u = f(t, u, c D μ u, u′) subject to the boundary conditions u′(0) = 0, u(T)+au′(T) = 0. Here α ∈ (1, 2), µ ∈ (0, 1), f is a Carathéodory function and c D is the Caputo fractional derivative. Existence and uniqueness results for the problem are given. The existence results are proved by the nonlinear Leray-Schauder alternative. We discuss the existence of positive and negative solutions to the problem and properties of their derivatives....