Positive Solutions of a Class of Second Order Semilinear Elliptic Equations in the Plane.
We deal with the problem of practical uniform -stability for nonlinear time-varying perturbed differential equations. The main aim is to give sufficient conditions on the linear and perturbed terms to guarantee the global existence and the practical uniform -stability of the solutions based on Gronwall’s type integral inequalities. Several numerical examples and an application to control systems with simulations are presented to illustrate the applicability of the obtained results.
Dans un exposé précédent [1], nous avons justifié l’introduction de l’équation de Szegö cubique comme cas modèle d’équation de type Schrödinger sans dispersion. Ce cas modèle s’est révélé être intéressant sous divers aspects [2]. Dans cet exposé, nous nous attacherons à montrer comment la complète intégrabilité de l’équation de Szegö cubique permet de résoudre un problème spectral inverse pour les opérateurs de Hankel.
A differential equation of the form (q(t)k(u)u')' = F(t,u)u' is considered and solutions u with u(0) = 0 are studied on the halfline [0,∞). Theorems about the existence, uniqueness, boundedness and dependence of solutions on a parameter are given.
A nonlinear differential equation of the form (q(x)k(x)u')' = F(x,u,u') arising in models of infiltration of water is considered, together with the corresponding differential equation with a positive parameter λ, (q(x)k(x)u')' = λF(x,u,u'). The theorems about existence, uniqueness, boundedness of solution and its dependence on the parameter are established.
In this paper we study a discrete Raman laser amplification model given as a Lotka-Volterra system. We show that in an ideal situation, the equations can be written as a Poisson system with boundary conditions using a global change of coordinates. We address the questions of existence and uniqueness of a solution. We deduce numerical schemes for the approximation of the solution that have good stability.
In this paper we study a discrete Raman laser amplification model given as a Lotka-Volterra system. We show that in an ideal situation, the equations can be written as a Poisson system with boundary conditions using a global change of coordinates. We address the questions of existence and uniqueness of a solution. We deduce numerical schemes for the approximation of the solution that have good stability.
We describe the fields of rational constants of generic four-variable Lotka-Volterra derivations. Thus, we determine all rational first integrals of the corresponding systems of differential equations. Such systems play a role in population biology, laser physics and plasma physics. They are also an important part of derivation theory, since they are factorizable derivations. Moreover, we determine the fields of rational constants of a class of monomial derivations.
The common goal of systems pharmacology, i.e. systems biology applied to the field of pharmacology, is to rely less on trial and error in designing an input-output systems, e.g. therapeutic schedules. In this paper we present, on the paradigmatic example of a regulatory network of drug-induced enzyme production, the further development of the study published by Duintjer Tebbens et al. (2019) in the Applications of Mathematics. Here, the key feature is that the nonlinear model in form of an ODE system...
For linear differential and functional-differential equations of the -th order criteria of equivalence with respect to the pointwise transformation are derived.