First order impulsive differential inclusions with periodic conditions.
The purpose of this paper is to prove an existence result for a multivalued Cauchy problem using a fixed point theorem for a multivalued contraction on a generalized complete metric space.
This paper deals with the existence of solutions to some classes of partial impulsive hyperbolic differential inclusions with variable times involving the Caputo fractional derivative. Our works will be considered by using the nonlinear alternative of Leray-Schauder type.
In this paper we study the convergence properties of the Galerkin approximations to a nonlinear, nonautonomous evolution inclusion and use them to determine the structural properties of the solution set and establish the existence of periodic solutions. An example of a multivalued parabolic p.d.ei̇s also worked out in detail.
The paper is concerned with a class of optimal blocking problems in the plane. We consider a time dependent set R(t) ⊂ ℝ2, described as the reachable set for a differential inclusion. To restrict its growth, a barrier Γ can be constructed, in real time. This is a one-dimensional rectifiable set which blocks the trajectories of the differential inclusion. In this paper we introduce a definition of “regular strategy”, based on a careful classification of blocking arcs. Moreover, we derive local and...
The paper is concerned with a class of optimal blocking problems in the plane. We consider a time dependent set R(t) ⊂ ℝ2, described as the reachable set for a differential inclusion. To restrict its growth, a barrier Γ can be constructed, in real time. This is a one-dimensional rectifiable set which blocks the trajectories of the differential inclusion. In this paper we introduce a definition of “regular strategy”, based on a careful classification...
In this paper, some hybrid fixed point theorems for the right monotone increasing multi-valued mappings in ordered Banach spaces are proved via measure of noncompactness and they are further applied to the neutral functional nonconvex differential inclusions involving discontinuous multi-functions for proving the existence results under mixed Lipschitz, compactness and right monotonicity conditions. Our results improve the multi-valued hybrid fixed point theorems of Dhage (Dhage, B. C., A fixed...
We establish sufficient conditions for the existence of solutions of a class of fractional functional differential inclusions involving the Hadamard fractional derivative with order . Both cases of convex and nonconvex valued right hand side are considered.