Displaying 201 – 220 of 2827

Showing per page

Admissible spaces for a first order differential equation with delayed argument

Nina A. Chernyavskaya, Lela S. Dorel, Leonid A. Shuster (2019)

Czechoslovak Mathematical Journal

We consider the equation - y ' ( x ) + q ( x ) y ( x - ϕ ( x ) ) = f ( x ) , x , where ϕ and q ( q 1 ) are positive continuous functions for all x and f C ( ) . By a solution of the equation we mean any function y , continuously differentiable everywhere in , which satisfies the equation for all x . We show that under certain additional conditions on the functions ϕ and q , the above equation has a unique solution y , satisfying the inequality y ' C ( ) + q y C ( ) c f C ( ) , where the constant c ( 0 , ) does not depend on the choice of f .

Aerodynamic deceleration at velocities near the escape velocity

Bartoň, Stanislav (2025)

Programs and Algorithms of Numerical Mathematics

This article presents basic procedures for calculating the trajectory of a spaceship that uses only the Earth’s atmosphere to reduce its speed, allowing it to land on the Earth’s surface successfully. The first flight of the ARTEMIS program, which took place from November 16 to December 11 2022, was used as a template for the calculations. All calculations are performed in the symbolic algebra program Maple. To simplify the calculations, forces that have a less significant impact on the shape of...

Affinor structures in the oscillation theory

Boris N. Shapukov (2002)

Banach Center Publications

In this paper we consider the system of Hamiltonian differential equations, which determines small oscillations of a dynamical system with n parameters. We demonstrate that this system determines an affinor structure J on the phase space TRⁿ. If J² = ωI, where ω = ±1,0, the phase space can be considered as the biplanar space of elliptic, hyperbolic or parabolic type. In the Euclidean case (Rⁿ = Eⁿ) we obtain the Hopf bundle and its analogs. The bases of these bundles are, respectively, the projective...

Algebraic integrability for minimum energy curves

Ivan Yudin, Fátima Silva Leite (2015)

Kybernetika

This paper deals with integrability issues of the Euler-Lagrange equations associated to a variational problem, where the energy function depends on acceleration and drag. Although the motivation came from applications to path planning of underwater robot manipulators, the approach is rather theoretical and the main difficulties result from the fact that the power needed to push an object through a fluid increases as the cube of its speed.

Algebraic solutions of the Lamé equation

Frits Beukers (2002)

Banach Center Publications

In this paper we give a summary of joint work with Alexa van der Waall concerning Lamé equations having finite monodromy. This research is the subject of van der Waall's Ph. D. thesis [W].

Currently displaying 201 – 220 of 2827