On the unique solvability of the Runge-Kutta equations.
As a numerical method for solving ordinary differential equations , the improved Euler method is not assumed to give exact solutions. In this paper we classify all cases where this method gives the exact solution for all initial conditions. We reduce an infinite system of partial differential equations for to a finite system that is sufficient and necessary for the improved Euler method to give the exact solution. The improved Euler method is the simplest explicit second order Runge-Kutta method....
We prove that for a given impulsive dynamical system there exists an isomorphism of the basic dynamical system such that in the new system equipped with the same impulse function each impulsive trajectory is global, i.e. the resulting dynamics is defined for all positive times. We also prove that for a given impulsive system it is possible to change the topology in the phase space so that we may consider the system as a semidynamical system (without impulses).
In this paper the author establishes estimation of the total truncation error after steps in the fifth order Ruge-Kutta-Huťa formula for systems of differential equations. The approach is analogous to that used by Vejvoda for the estimation of the classical formulas of the Runge-Kutta type of the 4-th order.
The paper describes the general form of an ordinary differential equation of the order which allows a nontrivial global transformation consisting of the...