Differential inequalities for hysteresis systems.
Sufficient conditions are given for the solvability of an impulsive Dirichlet boundary value problem to forced nonlinear differential equations involving the combination of viscous and dry frictions. Apart from the solvability, also the explicit estimates of solutions and their derivatives are obtained. As an application, an illustrative example is given, and the corresponding numerical solution is obtained by applying Matlab software.
For linear differential equations of the second order in the Jacobi form O. Borvka introduced a notion of dispersion. Here we generalize this notion to certain classes of linear differential equations of arbitrary order. Connection with Abel’s functional equation is derived. Relations between asymptotic behaviour of solutions of these equations and distribution of zeros of their solutions are also investigated.
This work deals with the analysis pertaining some dynamic behavior of vector solutions of first order two-dimensional neutral delay differential systems of the form The effort has been made to study where ; . We verify our results with the examples.