Displaying 61 – 80 of 2819

Showing per page

A model for gene activation.

Oppenheimer, Seth F., Fan, Ruping, Pruett, Stephan (2009)

Electronic Journal of Differential Equations (EJDE) [electronic only]

A model of competition

Peter Kahlig (2012)

Applicationes Mathematicae

A competition model is described by a nonlinear first-order differential equation (of Riccati type). Its solution is then used to construct a functional equation in two variables (admitting essentially the same solution) and several iterative functional equations; their continuous solutions are presented in various forms (closed form, power series, integral representation, asymptotic expansion, continued fraction). A constant C = 0.917... (inherent in the model) is shown to be a transcendental number....

A modified version of explicit Runge-Kutta methods for energy-preserving

Guang-Da Hu (2014)

Kybernetika

In this paper, Runge-Kutta methods are discussed for numerical solutions of conservative systems. For the energy of conservative systems being as close to the initial energy as possible, a modified version of explicit Runge-Kutta methods is presented. The order of the modified Runge-Kutta method is the same as the standard Runge-Kutta method, but it is superior in energy-preserving to the standard one. Comparing the modified Runge-Kutta method with the standard Runge-Kutta method, numerical experiments...

A new approach for solving nonlinear BVP's on the half-line for second order equations and applications

Serena Matucci (2015)

Mathematica Bohemica

We present a new approach to solving boundary value problems on noncompact intervals for second order differential equations in case of nonlocal conditions. Then we apply it to some problems in which an initial condition, an asymptotic condition and a global condition is present. The abstract method is based on the solvability of two auxiliary boundary value problems on compact and on noncompact intervals, and uses some continuity arguments and analysis in the phase space. As shown in the applications,...

A new characteristic property of Mittag-Leffler functions and fractional cosine functions

Zhan-Dong Mei, Ji-Gen Peng, Jun-Xiong Jia (2014)

Studia Mathematica

A new characteristic property of the Mittag-Leffler function E α ( a t α ) with 1 < α < 2 is deduced. Motivated by this property, a new notion, named α-order cosine function, is developed. It is proved that an α-order cosine function is associated with a solution operator of an α-order abstract Cauchy problem. Consequently, an α-order abstract Cauchy problem is well-posed if and only if its coefficient operator generates a unique α-order cosine function.

Currently displaying 61 – 80 of 2819