Conditioning of three-point boundary value problems associated with first order matrix Lyapunov systems.
A sufficient integral condition for the absence of eventually positive solutions of a first order stable type differential inequality with one nondecreasing retarded argument is given. In the special case of equality the result becomes an oscillation criterion.
MSC 2010: 34A08, 34A37, 49N70Here we investigate a problem of approaching terminal (target) set by a system of impulse differential equations of fractional order in the sense of Caputo. The system is under control of two players pursuing opposite goals. The first player tries to bring the trajectory of the system to the terminal set in the shortest time, whereas the second player tries to maximally put off the instant when the trajectory hits the set, or even avoid this meeting at all. We derive...
Conjugacy and disconjugacy criteria are established for the equation where is a locally summable function.
We give sufficient conditions for a diffeomorphism in the plane to be analytically conjugate to a shift in a complex neighborhood of a segment of an invariant curve. For a family of functions close to the identity uniform estimates are established. As a consequence an exponential upper estimate for splitting of separatrices is established for diffeomorphisms of the plane close to the identity. The constant in the exponent is related to the width of the analyticity domain of the limit flow separatrix....
This paper is based mainly on the joint paper with W. Kryszewski [Dzedzej, Z., Kryszewski, W.: Conley type index applied to Hamiltonian inclusions. J. Math. Anal. Appl. 347 (2008), 96–112.], where cohomological Conley type index for multivalued flows has been applied to prove the existence of nontrivial periodic solutions for asymptotically linear Hamiltonian inclusions. Some proofs and additional remarks concerning definition of the index and special cases are given.
To explore the impacts of time delay on nonlinear dynamics of consensus models, we incorporate time-varying delay into a two-agent system to study its long-time behaviors. By the classical 3/2 stability theory, we establish a sufficient condition for the system to experience unconditional consensus. Numerical examples show the effectiveness of the proposed protocols and present possible Hopf bifurcations when the time delay changes.
In this article we investigate the question [of] how meromorphic differential equations can be simplified by meromorphic equivalence. In the case of equations of block size 1, which generalizes the case of distinct eigenvalues, we identify a class of equations which are simplest possible in the sense that they carry the smallest number of parameters whithin their equivalence classes. We also discuss conditions under which individual equations can be simplified. Particular attention is paid to the...