Measure-differential inclusions in percussional dynamics.
The classical framework for studying the equations governing the motion of lumped parameter systems presumes one can provide expressions for the forces in terms of kinematical quantities for the individual constituents. This is not possible for a very large class of problems where one can only provide implicit relations between the forces and the kinematical quantities. In certain special cases, one can provide non-invertible expressions for a kinematical quantity in terms of the force, which then...
We study the vibrations of lumped parameter systems, the spring being defined by the classical linear constitutive relationship between the spring force and the elongation while the dashpot is described by a general implicit relationship between the damping force and the velocity. We prove global existence of solutions for the governing equations, and discuss conditions that the implicit relation satisfies that are sufficient for the uniqueness of solutions. We also present some counterexamples...
The basic idea of this paper is to give the existence theorem and the method of averaging for the system of functional-differential inclusions of the form ⎧ (0) ⎨ ⎩ (1)
In this paper we are concerned with sufficient conditions for the existence of minimal and maximal solutions of differential equations of the form where is the iterated linear differential operator of order and is a continuous function.
A minimum energy control problem for fractional positive continuous-time linear systems with bounded inputs is formulated and solved. Sufficient conditions for the existence of a solution to the problem are established. A procedure for solving the problem is proposed and illustrated with a numerical example.
We consider a class of differential inclusions in (nonseparable) Banach spaces satisfying mixed type semicontinuity hypotheses and prove the existence of solutions for a problem with state constraints. The cases of dissipative type conditions and with time lag are also studied. These results are then applied to control systems.