Existence of solutions for nonlinear four-point -Laplacian boundary value problems on time scales.
Existence principles for solutions of singular differential systems satisfying nonlocal boundary conditions are stated. Here is a homeomorphism onto and the Carathéodory function may have singularities in its space variables. Applications of the existence principles are given.
By using Mawhin’s continuation theorem, we provide some sufficient conditions for the existence of solution for a class of high order differential equations of the form associated with the integral boundary conditions at resonance. The interesting point is that we shall deal with the case of nontrivial kernel of arbitrary dimension corresponding to high order differential operator which will cause some difficulties in constructing the generalized inverse operator.
This paper studies a new class of nonlocal boundary value problems of nonlinear differential equations and inclusions of fractional order with fractional integral boundary conditions. Some new existence results are obtained by using standard fixed point theorems and Leray-Schauder degree theory. Some illustrative examples are also discussed.
The purpose of the present paper is to study the existence of solutions to initial value problems for nonlinear first order differential systems subject to nonlinear nonlocal initial conditions of functional type. The approach uses vector-valued metrics and matrices convergent to zero. Two existence results are given by means of Schauder and Leray-Schauder fixed point principles and the existence and uniqueness of the solution is obtained via a fixed point theorem due to Perov. Two examples are...
This paper treats the question of the existence of solutions of a fourth order boundary value problem having the following form: , 0 < t < 1, x(0) = x’(0) = 0, x”(1) = 0, . Boundary value problems of very similar type are also considered. It is assumed that f is a function from the space C([0,1]×ℝ²,ℝ). The main tool used in the proof is the Leray-Schauder nonlinear alternative.