Displaying 101 – 120 of 142

Showing per page

Sharp estimates for the Ambrosetti-Hess problem and consequences

José Gámez, Juan Ruiz-Hidalgo (2006)

Journal of the European Mathematical Society

Motivated by [3], we define the “Ambrosetti–Hess problem” to be the problem of bifurcation from infinity and of the local behavior of continua of solutions of nonlinear elliptic eigenvalue problems. Although the works in this direction underline the asymptotic properties of the nonlinearity, here we point out that this local behavior is determined by the global shape of the nonlinearity.

Singular eigenvalue problems for second order linear ordinary differential equations

Árpád Elbert, Takaŝi Kusano, Manabu Naito (1998)

Archivum Mathematicum

We consider linear differential equations of the form ( p ( t ) x ' ) ' + λ q ( t ) x = 0 ( p ( t ) > 0 , q ( t ) > 0 ) ( A ) on an infinite interval [ a , ) and study the problem of finding those values of λ for which () has principal solutions x 0 ( t ; λ ) vanishing at t = a . This problem may well be called a singular eigenvalue problem, since requiring x 0 ( t ; λ ) to be a principal solution can be considered as a boundary condition at t = . Similarly to the regular eigenvalue problems for () on compact intervals, we can prove a theorem asserting that there exists a sequence { λ n } of eigenvalues such...

Solution sets of multivalued Sturm-Liouville problems in Banach spaces

Alessandro Margheri, Pietro Zecca (1994)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We give some results about the topological structure of solution sets of multivalued Sturm-Liouville problems in Banach spaces.

Some global results for nonlinear fourth order eigenvalue problems

Ziyatkhan Aliyev (2014)

Open Mathematics

In this paper, we consider the nonlinear fourth order eigenvalue problem. We show the existence of family of unbounded continua of nontrivial solutions bifurcating from the line of trivial solutions. These global continua have properties similar to those found in Rabinowitz and Berestycki well-known global bifurcation theorems.

Some global results for nonlinear Sturm-Liouville problems with spectral parameter in the boundary condition

Ziyatkhan S. Aliyev, Gunay M. Mamedova (2015)

Annales Polonici Mathematici

We consider nonlinear Sturm-Liouville problems with spectral parameter in the boundary condition. We investigate the structure of the set of bifurcation points, and study the behavior of two families of continua of nontrivial solutions of this problem contained in the classes of functions having oscillation properties of the eigenfunctions of the corresponding linear problem, and bifurcating from the points and intervals of the line of trivial solutions.

Currently displaying 101 – 120 of 142