Displaying 201 – 220 of 1972

Showing per page

Asymptotic normality of eigenvalues of random ordinary differential operators

Martin Hála (1991)

Applications of Mathematics

Boundary value problems for ordinary differential equations with random coefficients are dealt with. The coefficients are assumed to be Gaussian vectorial stationary processes multiplied by intensity functions and converging to the white noise process. A theorem on the limit distribution of the random eigenvalues is presented together with applications in mechanics and dynamics.

Basis properties of a fourth order differential operator with spectral parameter in the boundary condition

Ziyatkhan Aliyev (2010)

Open Mathematics

We consider a fourth order eigenvalue problem containing a spectral parameter both in the equation and in the boundary condition. The oscillation properties of eigenfunctions are studied and asymptotic formulae for eigenvalues and eigenfunctions are deduced. The basis properties in L p(0; l); p ∈ (1;∞); of the system of eigenfunctions are investigated.

Bessel matrix differential equations: explicit solutions of initial and two-point boundary value problems

Enrique Navarro, Rafael Company, Lucas Jódar (1993)

Applicationes Mathematicae

In this paper we consider Bessel equations of the type t 2 X ( 2 ) ( t ) + t X ( 1 ) ( t ) + ( t 2 I - A 2 ) X ( t ) = 0 , where A is an n × n complex matrix and X(t) is an n × m matrix for t > 0. Following the ideas of the scalar case we introduce the concept of a fundamental set of solutions for the above equation expressed in terms of the data dimension. This concept allows us to give an explicit closed form solution of initial and two-point boundary value problems related to the Bessel equation.

Bound sets and two-point boundary value problems for second order differential systems

Jean Mawhin, Katarzyna Szymańska-Dębowska (2019)

Mathematica Bohemica

The solvability of second order differential systems with the classical separated or periodic boundary conditions is considered. The proofs use special classes of curvature bound sets or bound sets together with the simplest version of the Leray-Schauder continuation theorem. The special cases where the bound set is a ball, a parallelotope or a bounded convex set are considered.

Boundary Data Maps for Schrödinger Operators on a Compact Interval

S. Clark, F. Gesztesy, M. Mitrea (2010)

Mathematical Modelling of Natural Phenomena

We provide a systematic study of boundary data maps, that is, 2 × 2 matrix-valued Dirichlet-to-Neumann and more generally, Robin-to-Robin maps, associated with one-dimensional Schrödinger operators on a compact interval [0, R] with separated boundary conditions at 0 and R. Most of our results are formulated in the non-self-adjoint context. Our principal results include explicit representations of these boundary data maps in terms of the resolvent...

Boundary layer phenomenon for three -point boundary value problem for the nonlinear singularly perturbed systems

Robert Vrabel (2011)

Kybernetika

This paper deals with the three-point boundary value problem for the nonlinear singularly perturbed second-order systems. Especially, we focus on an analysis of the solutions in the right endpoint of considered interval from an appearance of the boundary layer point of view. We use the method of lower and upper solutions combined with analysis of the integral equation associated with the class of nonlinear systems considered here.

Currently displaying 201 – 220 of 1972