On non-existence of periodic solutions of an important differential equation
New sufficient conditions of the existence and uniqueness of the solution of a boundary problem for an ordinary differential equation of -th order with certain functional boundary conditions are constructed by the method of a priori estimates.
In this note we provide a probabilistic proof that Poisson and/or Dirichlet problems in an ellipsoid in Rd, that have polynomial data, also have polynomial solutions. Our proofs use basic stochastic calculus. The existing proofs are based on famous lemma by E. Fisher which we do not use, and present a simple martingale proof of it as well.
In this paper we study nonlinear second order differential equations subject to separated linear boundary conditions and to linear impulse conditions. Sign properties of an associated Green’s function are investigated and existence results for positive solutions of the nonlinear boundary value problem with impulse are established. Upper and lower bounds for positive solutions are also given.
The differential equation of the form , a ∈ (0,∞), is considered and solutions u with u(0) = 0 and (u(t))² + (u’(t))² > 0 on (0,∞) are studied. Theorems about existence, uniqueness, boundedness and dependence of solutions on a parameter are given.