On asymptotic properties and distribution of zeros of solutions of
This paper is concerned with the asymptotic behavior of solutions of nonlinear differential equations of the third-order with quasiderivatives. We give the necessary and sufficient conditions guaranteeing the existence of bounded nonoscillatory solutions. Sufficient conditions are proved via a topological approach based on the Banach fixed point theorem.
In this paper a singular third order eigenvalue problem is studied. The results of the paper complete the results given in the papers [3], [5].
The lower bounds of the spacings b-a or a’-a of two consecutive zeros or three consecutive zeros of solutions of third order differential equations of the form y”’ + q(t)y’ + p(t)y = 0 (*) are derived under very general assumptions on p and q. These results are then used to show that or as n → ∞ under suitable assumptions on p and q, where ⟨tₙ⟩ is a sequence of zeros of an oscillatory solution of (*). The Opial-type inequalities are used to derive lower bounds of the spacings d-a or b-d for...
We investigate an asymptotic behaviour of damped non-oscillatory solutions of the initial value problem with a time singularity , , on the unbounded domain . Function is locally Lipschitz continuous on and has at least three zeros , and . The initial value . Function is continuous on has a positive continuous derivative on and . Asymptotic formulas for damped non-oscillatory solutions and their first derivatives are derived under some additional assumptions. Further, we provide...
The paper deals with existence of Kneser solutions of -th order nonlinear differential equations with quasi-derivatives.