Displaying 201 – 220 of 331

Showing per page

On the Existence of Oscillatory Solutions of the Second Order Nonlinear ODE

Martin Rohleder (2012)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

The paper investigates the singular initial problem[4pt] ( p ( t ) u ' ( t ) ) ' + q ( t ) f ( u ( t ) ) = 0 , u ( 0 ) = u 0 , u ' ( 0 ) = 0 [4pt] on the half-line [ 0 , ) . Here u 0 [ L 0 , L ] , where L 0 , 0 and L are zeros of f , which is locally Lipschitz continuous on . Function p is continuous on [ 0 , ) , has a positive continuous derivative on ( 0 , ) and p ( 0 ) = 0 . Function q is continuous on [ 0 , ) and positive on ( 0 , ) . For specific values u 0 we prove the existence and uniqueness of damped solutions of this problem. With additional conditions for f , p and q it is shown that the problem has for each specified u 0 a unique...

On the global dynamics of the cancer AIDS-related mathematical model

Konstantin E. Starkov, Corina Plata-Ante (2014)

Kybernetika

In this paper we examine some features of the global dynamics of the four-dimensional system created by Lou, Ruggeri and Ma in 2007 which describes the behavior of the AIDS-related cancer dynamic model in vivo. We give upper and lower ultimate bounds for concentrations of cell populations and the free HIV-1 involved in this model. We show for this dynamics that there is a positively invariant polytope and we find a few surfaces containing omega-limit sets for positive half trajectories in the positive...

On the method of Esclangon

Ján Andres, Tomáš Turský (1996)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

On the oscillation of a class of linear homogeneous third order differential equations

N. Parhi, P. Das (1998)

Archivum Mathematicum

In this paper we have considered completely the equation y ' ' ' + a ( t ) y ' ' + b ( t ) y ' + c ( t ) y = 0 , ( * ) where a C 2 ( [ σ , ) , R ) , b C 1 ( [ σ , ) , R ) , c C ( [ σ , ) , R ) and σ R such that a ( t ) 0 , b ( t ) 0 and c ( t ) 0 . It has been shown that the set of all oscillatory solutions of (*) forms a two-dimensional subspace of the solution space of (*) provided that (*) has an oscillatory solution. This answers a question raised by S. Ahmad and A.  C. Lazer earlier.

Currently displaying 201 – 220 of 331