Displaying 441 – 460 of 587

Showing per page

Positive periodic solution for ratio-dependent n -species discrete time system

Mei-Lan Tang, Xin-Ge Liu (2011)

Applications of Mathematics

In this paper, sharp a priori estimate of the periodic solutions is obtained for the discrete analogue of the continuous time ratio-dependent predator-prey system, which is governed by nonautonomous difference equations, modelling the dynamics of the n - 1 competing preys and one predator having nonoverlapping generations. Based on more precise a priori estimate and the continuation theorem of the coincidence degree, an easily verifiable sufficient criterion of the existence of positive periodic solutions...

Positive periodic solutions of N -species neutral delay systems

Hui Fang (2003)

Czechoslovak Mathematical Journal

In this paper, we employ some new techniques to study the existence of positive periodic solution of n -species neutral delay system N i ' ( t ) = N i ( t ) a i ( t ) - j = 1 n β i j ( t ) N j ( t ) - j = 1 n b i j ( t ) N j ( t - τ i j ( t ) ) - j = 1 n c i j ( t ) N j ' ( t - τ i j ( t ) ) . As a corollary, we answer an open problem proposed by Y. Kuang.

Positive periodic solutions to super-linear second-order ODEs

Jiří Šremr (2025)

Czechoslovak Mathematical Journal

We study the existence and uniqueness of a positive solution to the problem u ' ' = p ( t ) u + q ( t , u ) u + f ( t ) ; u ( 0 ) = u ( ω ) , u ' ( 0 ) = u ' ( ω ) with a super-linear nonlinearity and a nontrivial forcing term f . To prove our main results, we combine maximum and anti-maximum principles together with the lower/upper functions method. We also show a possible physical motivation for the study of such a kind of periodic problems and we compare the results obtained with the facts well known for the corresponding autonomous case.

Realization theory methods for the stability investigation of nonlinear infinite-dimensional input-output systems

Volker Reitmann (2011)

Mathematica Bohemica

Realization theory for linear input-output operators and frequency-domain methods for the solvability of Riccati operator equations are used for the stability and instability investigation of a class of nonlinear Volterra integral equations in a Hilbert space. The key idea is to consider, similar to the Volterra equation, a time-invariant control system generated by an abstract ODE in a weighted Sobolev space, which has the same stability properties as the Volterra equation.

Reconstruction of map projection, its inverse and re-projection

Tomáš Bayer, Milada Kočandrlová (2018)

Applications of Mathematics

This paper focuses on the automatic recognition of map projection, its inverse and re-projection. Our analysis leads to the unconstrained optimization solved by the hybrid BFGS nonlinear least squares technique. The objective function is represented by the squared sum of the residuals. For the map re-projection the partial differential equations of the inverse transformation are derived. They can be applied to any map projection. Illustrative examples of the stereographic and globular Nicolosi projections...

Currently displaying 441 – 460 of 587