Loading [MathJax]/extensions/MathZoom.js
Displaying 41 –
60 of
2549
In the theory of autonomous perturbations of periodic solutions of ordinary differential equations the method of the Poincaré mapping has been widely used. For the analysis of properties of this mapping in the case of two-dimensional systems, a result first obtained probably by Diliberto in 1950 is sometimes used. In the paper, this result is (partially) extended to a certain class of autonomous ordinary differential equations of higher dimension.
In this work we will be concerned with the existence of almost homoclinic solutions for a Newtonian system , where t ∈ ℝ, q ∈ ℝⁿ. It is assumed that a potential V: ℝ × ℝⁿ → ℝ is C¹-smooth and its gradient map is bounded with respect to t. Moreover, a forcing term f: ℝ → ℝⁿ is continuous, bounded and square integrable. We will show that the approximative scheme due to J. Janczewska (see [J2]) for a time periodic potential extends to our case.
Under suitable hypotheses on , , we prove some stability results which relate the asymptotic behavior of the solutions of to the asymptotic behavior of the solutions of .
Currently displaying 41 –
60 of
2549