Invariant manifolds and the concept of asymptotic phase
The response of an oscillator to a small amplitude periodic excitation is discussed. In particular, sufficient conditions are formulated for the perturbed oscillator to have an invariant torus in the phase cylinder. When such an invariant torus exists, some perturbed solutions are in the basin of attraction of this torus and are thus entrained to the dynamical behavior of the perturbed system on the torus. In particular, the perturbed solutions in the basin of attraction of the invariant torus are...
In this communication we state and analyze the new inverse problems in the theory of differential equations related to the construction of an analytic planar verctor field from a given, finite number of solutions, trajectories or partial integrals.Likewise, we study the problem of determining a stationary complex analytic vector field Γ from a given, finite subset of terms in the formal power series (...).
This paper presents the role of vector relative degree in the formulation of stationarity conditions of optimal control problems for affine control systems. After translating the dynamics into a normal form, we study the Hamiltonian structure. Stationarity conditions are rewritten with a limited number of variables. The approach is demonstrated on two and three inputs systems, then, we prove a formal result in the general case. A mechanical system example serves as illustration.