A note on periodic solutions of second order nonautonomous singular coupled systems.
In this paper, we develop a generalized quasilinearization technique for a nonlinear second order periodic boundary value problem and obtain a sequence of approximate solutions converging uniformly and quadratically to a solution of the problem. Then we improve the convergence of the sequence of approximate solutions by establishing the convergence of order
A connection between the Landesman-Lazer condition and the solvability of the equation Lx = N(x) in a cone with a noninvertible linear operator L is studied. The result is based on the abstract framework from [5], applied to the existence of periodic solutions of ordinary differential equations, and compared with theorems by Santanilla (see [7]).
We give a shorter proof to a recent result by Neuberger [Rocky Mountain J. Math. 36 (2006)], in the real case. Our result is essentially an application of the global asymptotic stability Jacobian Conjecture. We also extend some of the results of Neuberger's paper.
The half-linear differential equation is considered, where and are positive constants and is a real-valued continuous function on . It is proved that, under a mild integral smallness condition of which is weaker than the absolutely integrable condition of , the above equation has a nonoscillatory solution such that and (), and a nonoscillatory solution such that and ().
We give a sufficient condition for the oscillation of linear homogeneous second order differential equation , where and is positive real number.
This paper deals with the oscillation problems on the nonlinear differential equation involving -Laplacian. Sufficient conditions are given under which all proper solutions are oscillatory. In addition, we give a-priori estimates for nonoscillatory solutions and propose an open problem.