Displaying 81 – 100 of 327

Showing per page

A periodic boundary value problem in Hilbert space

Boris Rudolf (1994)

Mathematica Bohemica

In the paper some existence results for periodic boundary value problems for the ordinary differential equation of the second order in a Hilbert space are given. Under some auxiliary assumptions the set of solutions is compact and connected or it is convex.

A Periodic Lotka-Volterra System

Tsvetkov, D. (1996)

Serdica Mathematical Journal

In this paper periodic time-dependent Lotka-Volterra systems are considered. It is shown that such a system has positive periodic solutions. It is done without constructive conditions over the period and the parameters.

A periodic model for the dynamics of cell volume

Philip Korman (2016)

Annales Polonici Mathematici

We prove the existence and uniqueness of a positive periodic solution for a model describing the dynamics of cell volume flux, introduced by Julio A. Hernández [Bull. Math. Biol. 69 (2007), 1631-1648]. We also show that the periodic solution is a global attractor. Our results confirm the conjectures made in an interesting recent book of P. J. Torres [Atlantis Press, 2015].

A predator-prey model with state dependent impulsive effects

Changming Ding (2014)

Annales Polonici Mathematici

We investigate a Lotka-Volterra predator-prey model with state dependent impulsive effects, in which the control strategies by releasing natural enemies and spraying pesticide at different thresholds are considered. We present some sufficient conditions to guarantee the existence and asymptotical stability of semi-trivial periodic solutions and positive periodic solutions.

A predictive method allowing the use of a single ionic model in numerical cardiac electrophysiology

M. Rioux, Y. Bourgault (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

One of the current debate about simulating the electrical activity in the heart is the following: Using a realistic anatomical setting, i.e. realistic geometries, fibres orientations, etc., is it enough to use a simplified 2-variable phenomenological model to reproduce the main characteristics of the cardiac action potential propagation, and in what sense is it sufficient? Using a combination of dimensional and asymptotic analysis, together with the well-known Mitchell − Schaeffer model, it is shown...

A proof of the stratified Morse inequalities for singular complex algebraic curves using the Witten deformation

Ursula Ludwig (2011)

Annales de l’institut Fourier

The Witten deformation is an analytic method proposed by Witten which, given a Morse function f : M R on a smooth compact manifold M , allows to prove the Morse inequalities. The aim of this article is to generalise the Witten deformation to stratified Morse functions (in the sense of stratified Morse theory as developed by Goresky and MacPherson) on a singular complex algebraic curve. In a previous article the author developed the Witten deformation for the model of an algebraic curve with cone-like singularities...

A related-key attack on iterated chaotic ciphers

Yang Yang, Chenhui Jin (2008)

Kybernetika

In this paper, we present a new type of attack on iterated chaotic ciphers using related keys. Based on the fact that a chaotic sequence is not sensitive to the less significant bits of initial conditions and parameters, a divide- and-conquer attack on iterated chaotic ciphers was presented by us before, which significantly reduces the computing complexity of attacks. However, if the information leaked is significant according to the distribution of the coincidence degrees, a measure for the information...

A remark on power comparison theorem for half-linear differential equations

Gabriella Bognár, Ondřej Došlý (2008)

Mathematica Bohemica

We consider the half-linear second order differential equation which is viewed as a perturbation of the so-called Riemann-Weber half-linear differential equation. We present a comparison theorem with respect to the power of the half-linearity in the equation under consideration. Our research is motivated by the recent results published by J. Sugie, N. Yamaoka, Acta Math. Hungar. 111 (2006), 165–179.

A remark on the local Lipschitz continuity of vector hysteresis operators

Pavel Krejčí (2001)

Applications of Mathematics

It is known that the vector stop operator with a convex closed characteristic Z of class C 1 is locally Lipschitz continuous in the space of absolutely continuous functions if the unit outward normal mapping n is Lipschitz continuous on the boundary Z of Z . We prove that in the regular case, this condition is also necessary.

Currently displaying 81 – 100 of 327