A partial generalization of Diliberto’s theorem for certain DEs of higher dimension
In the paper some existence results for periodic boundary value problems for the ordinary differential equation of the second order in a Hilbert space are given. Under some auxiliary assumptions the set of solutions is compact and connected or it is convex.
In this paper periodic time-dependent Lotka-Volterra systems are considered. It is shown that such a system has positive periodic solutions. It is done without constructive conditions over the period and the parameters.
We prove the existence and uniqueness of a positive periodic solution for a model describing the dynamics of cell volume flux, introduced by Julio A. Hernández [Bull. Math. Biol. 69 (2007), 1631-1648]. We also show that the periodic solution is a global attractor. Our results confirm the conjectures made in an interesting recent book of P. J. Torres [Atlantis Press, 2015].
We investigate a Lotka-Volterra predator-prey model with state dependent impulsive effects, in which the control strategies by releasing natural enemies and spraying pesticide at different thresholds are considered. We present some sufficient conditions to guarantee the existence and asymptotical stability of semi-trivial periodic solutions and positive periodic solutions.
One of the current debate about simulating the electrical activity in the heart is the following: Using a realistic anatomical setting, i.e. realistic geometries, fibres orientations, etc., is it enough to use a simplified 2-variable phenomenological model to reproduce the main characteristics of the cardiac action potential propagation, and in what sense is it sufficient? Using a combination of dimensional and asymptotic analysis, together with the well-known Mitchell − Schaeffer model, it is shown...
The Witten deformation is an analytic method proposed by Witten which, given a Morse function on a smooth compact manifold , allows to prove the Morse inequalities. The aim of this article is to generalise the Witten deformation to stratified Morse functions (in the sense of stratified Morse theory as developed by Goresky and MacPherson) on a singular complex algebraic curve. In a previous article the author developed the Witten deformation for the model of an algebraic curve with cone-like singularities...
In this paper, we present a new type of attack on iterated chaotic ciphers using related keys. Based on the fact that a chaotic sequence is not sensitive to the less significant bits of initial conditions and parameters, a divide- and-conquer attack on iterated chaotic ciphers was presented by us before, which significantly reduces the computing complexity of attacks. However, if the information leaked is significant according to the distribution of the coincidence degrees, a measure for the information...
Oscillation criteria of Nehari-type for the equation , , are established. These criteria impose no sign restriction on the function and generalize some recent results of the second author.
We consider the half-linear second order differential equation which is viewed as a perturbation of the so-called Riemann-Weber half-linear differential equation. We present a comparison theorem with respect to the power of the half-linearity in the equation under consideration. Our research is motivated by the recent results published by J. Sugie, N. Yamaoka, Acta Math. Hungar. 111 (2006), 165–179.
It is known that the vector stop operator with a convex closed characteristic of class is locally Lipschitz continuous in the space of absolutely continuous functions if the unit outward normal mapping is Lipschitz continuous on the boundary of . We prove that in the regular case, this condition is also necessary.