Displaying 1841 – 1860 of 2549

Showing per page

Positive periodic solution for ratio-dependent n -species discrete time system

Mei-Lan Tang, Xin-Ge Liu (2011)

Applications of Mathematics

In this paper, sharp a priori estimate of the periodic solutions is obtained for the discrete analogue of the continuous time ratio-dependent predator-prey system, which is governed by nonautonomous difference equations, modelling the dynamics of the n - 1 competing preys and one predator having nonoverlapping generations. Based on more precise a priori estimate and the continuation theorem of the coincidence degree, an easily verifiable sufficient criterion of the existence of positive periodic solutions...

Positive periodic solutions of N -species neutral delay systems

Hui Fang (2003)

Czechoslovak Mathematical Journal

In this paper, we employ some new techniques to study the existence of positive periodic solution of n -species neutral delay system N i ' ( t ) = N i ( t ) a i ( t ) - j = 1 n β i j ( t ) N j ( t ) - j = 1 n b i j ( t ) N j ( t - τ i j ( t ) ) - j = 1 n c i j ( t ) N j ' ( t - τ i j ( t ) ) . As a corollary, we answer an open problem proposed by Y. Kuang.

Positive periodic solutions to super-linear second-order ODEs

Jiří Šremr (2025)

Czechoslovak Mathematical Journal

We study the existence and uniqueness of a positive solution to the problem u ' ' = p ( t ) u + q ( t , u ) u + f ( t ) ; u ( 0 ) = u ( ω ) , u ' ( 0 ) = u ' ( ω ) with a super-linear nonlinearity and a nontrivial forcing term f . To prove our main results, we combine maximum and anti-maximum principles together with the lower/upper functions method. We also show a possible physical motivation for the study of such a kind of periodic problems and we compare the results obtained with the facts well known for the corresponding autonomous case.

Positive solutions of third order damped nonlinear differential equations

Miroslav Bartušek, Mariella Cecchi, Zuzana Došlá, Mauro Marini (2011)

Mathematica Bohemica

We study solutions tending to nonzero constants for the third order differential equation with the damping term ( a 1 ( t ) ( a 2 ( t ) x ' ( t ) ) ' ) ' + q ( t ) x ' ( t ) + r ( t ) f ( x ( ϕ ( t ) ) ) = 0 in the case when the corresponding second order differential equation is oscillatory.

Principal solutions and transformations of linear Hamiltonian systems

Ondřej Došlý (1992)

Archivum Mathematicum

Sufficient conditions are given which guarantee that the linear transformation converting a given linear Hamiltonian system into another system of the same form transforms principal (antiprincipal) solutions into principal (antiprincipal) solutions.

Problems with one quarter

Ján Ohriska (2005)

Czechoslovak Mathematical Journal

In this paper two sequences of oscillation criteria for the self-adjoint second order differential equation ( r ( t ) u ' ( t ) ) ' + p ( t ) u ( t ) = 0 are derived. One of them deals with the case d t r ( t ) = , and the other with the case d t r ( t ) < .

Currently displaying 1841 – 1860 of 2549