Displaying 1961 – 1980 of 2549

Showing per page

Second order nonlinear differential equations with linear impulse and periodic boundary conditions

Aydin Huseynov (2011)

Applications of Mathematics

In this study, we establish existence and uniqueness theorems for solutions of second order nonlinear differential equations on a finite interval subject to linear impulse conditions and periodic boundary conditions. The results obtained yield periodic solutions of the corresponding periodic impulsive nonlinear differential equation on the whole real axis.

Sharp estimates for the Ambrosetti-Hess problem and consequences

José Gámez, Juan Ruiz-Hidalgo (2006)

Journal of the European Mathematical Society

Motivated by [3], we define the “Ambrosetti–Hess problem” to be the problem of bifurcation from infinity and of the local behavior of continua of solutions of nonlinear elliptic eigenvalue problems. Although the works in this direction underline the asymptotic properties of the nonlinearity, here we point out that this local behavior is determined by the global shape of the nonlinearity.

Similarity solutions for high frequency excitation of liquid metal in an antisymmetric magnetic field

Bernard Brighi, Jean-David Hoernel (2006)

Banach Center Publications

The aim of this paper is to investigate, as precisely as possible, a boundary value problem involving a third order ordinary differential equation. Its solutions are the similarity solutions of a problem arising in the study of the phenomenon of high frequency excitation of liquid metal systems in an antisymmetric magnetic field within the framework of boundary layer approximation.

Simple examples of one-parameter planar bifurcations.

Armengol Gasull, Rafel Prohens (2000)

Extracta Mathematicae

In this paper we give simple and low degree examples of one-parameter polynomial families of planar differential equations which present generic, codimension one, isolated, compact bifurcations. In contrast with some examples which appear in the usual text books each bifurcation occurs when the bifurcation parameter is zero. We study the total number of limit cycles that the examples present and we also make their phase portraits on the Poincaré sphere.

Currently displaying 1961 – 1980 of 2549