A Note on Multistep Methods and Attracting Sets of Dynamical Systems.
The half-linear differential equation is considered, where and are positive constants and is a real-valued continuous function on . It is proved that, under a mild integral smallness condition of which is weaker than the absolutely integrable condition of , the above equation has a nonoscillatory solution such that and (), and a nonoscillatory solution such that and ().
The paper is devoted to the question whether some kind of additional information makes it possible to determine the fundamental matrix of variational equations in . An application concerning computation of a derivative of a scalar Poincaré mapping is given.
In the paper [CEGHM] a polynomial counterexample to the Markus-Yamabe Conjecture and to the discrete Markus-Yamabe Question in dimension n ≥ 3 are given. In the present paper we explain a way for obtaining a family of polynomial counterexamples containing the above ones. Finally we study the global dynamics of the examples given in [CEGHM].
We investigate a Lotka-Volterra predator-prey model with state dependent impulsive effects, in which the control strategies by releasing natural enemies and spraying pesticide at different thresholds are considered. We present some sufficient conditions to guarantee the existence and asymptotical stability of semi-trivial periodic solutions and positive periodic solutions.
It is shown that the uniform exponential stability and the uniform stability at permanently acting disturbances of a sufficiently smooth but not necessarily steady-state solution of a general variational inequality is a consequence of the uniform exponential stability of a zero solution of another (so called linearized) variational inequality.
The following problem of Markus and Yamabe is answered affirmatively: Let f be a local diffeomorphism of the euclidean plane whose jacobian matrix has negative trace everywhere. If f(0) = 0, is it true that 0 is a global attractor of the ODE dx/dt = f(x)? An old result of Olech states that this is equivalent to the question if such an f is injective. Here the problem is treated in the latter form by means of an investigation of the behaviour of f near infinity.