Page 1 Next

Displaying 1 – 20 of 23

Showing per page

New Computational Tools for Modeling Chronic Myelogenous Leukemia

M. M. Peet, P. S. Kim, S.-I. Niculescu, D. Levy (2009)

Mathematical Modelling of Natural Phenomena

In this paper, we consider a system of nonlinear delay-differential equations (DDEs) which models the dynamics of the interaction between chronic myelogenous leukemia (CML), imatinib, and the anti-leukemia immune response. Because of the chaotic nature of the dynamics and the sparse nature of experimental data, we look for ways to use computation to analyze the model without employing direct numerical simulation. In particular, we develop several tools using Lyapunov-Krasovskii analysis that allow...

New results on stability of periodic solution for CNNs with proportional delays and D operator

Bo Du (2019)

Kybernetika

The problems related to periodic solutions of cellular neural networks (CNNs) involving D operator and proportional delays are considered. We shall present Topology degree theory and differential inequality technique for obtaining the existence of periodic solution to the considered neural networks. Furthermore, Laypunov functional method is used for studying global asymptotic stability of periodic solutions to the above system.

Nonoscillation and asymptotic behaviour for third order nonlinear differential equations

Aydın Tiryaki, A. Okay Çelebi (1998)

Czechoslovak Mathematical Journal

In this paper we consider the equation y ' ' ' + q ( t ) y ' α + p ( t ) h ( y ) = 0 , where p , q are real valued continuous functions on [ 0 , ) such that q ( t ) 0 , p ( t ) 0 and h ( y ) is continuous in ( - , ) such that h ( y ) y > 0 for y 0 . We obtain sufficient conditions for solutions of the considered equation to be nonoscillatory. Furthermore, the asymptotic behaviour of these nonoscillatory solutions is studied.

Novel method for generalized stability analysis of nonlinear impulsive evolution equations

JinRong Wang, Yong Zhou, Wei Wei (2012)

Kybernetika

In this paper, we discuss some generalized stability of solutions to a class of nonlinear impulsive evolution equations in the certain piecewise essentially bounded functions space. Firstly, stabilization of solutions to nonlinear impulsive evolution equations are studied by means of fixed point methods at an appropriate decay rate. Secondly, stable manifolds for the associated singular perturbation problems with impulses are compared with each other. Finally, an example on initial boundary value...

Currently displaying 1 – 20 of 23

Page 1 Next