Radial selfsimilar solutions of a nonlinear Ornstein-Uhlenbeck equation.
Dans cet article, nous montrons que la notion analytique d’exposants développée par Levelt pour les systèmes différentiels linéaires en une singularité régulière s’interprète algébriquement en termes d’invariants de réseaux, relatifs à un réseau stable maximal que nous appelons « réseau de Levelt ». Nous obtenons en particulier un encadrement pour la somme des exposants des systèmes n’ayant que des singularités régulières sur ).
We are interested in the optimality of monotonicity criteria for the period function of some planar Hamiltonian systems. This study is illustrated by examples.
We study the relation between the solutions set to a perturbed semilinear differential inclusion with nonconvex and non-Lipschitz right-hand side in a Banach space and the solutions set to the relaxed problem corresponding to the original one. We find the conditions under which the set of solutions for the relaxed problem coincides with the intersection of closures (in the space of continuous functions) of sets of δ-solutions to the original problem.
In this paper we study a linear integral equation , its resolvent equation , the variation of parameters formula , and a perturbed equation. The kernel, , satisfies classical smoothness and sign conditions assumed in many real-world problems. We study the effects of perturbations of and also the limit sets of the resolvent. These results lead us to the study of nonlinear perturbations.
Some problems in differential equations evolve towards Topology from an analytical origin. Two such problems will be discussed: the existence of solutions asymptotic to the equilibrium and the stability of closed orbits of Hamiltonian systems. The theory of retracts and the fixed point index have become useful tools in the study of these questions.