Page 1 Next

Displaying 1 – 20 of 25

Showing per page

Relations de Fuchs pour les systèmes différentiels réguliers

Eduardo Corel (2001)

Bulletin de la Société Mathématique de France

Dans cet article, nous montrons que la notion analytique d’exposants développée par Levelt pour les systèmes différentiels linéaires en une singularité régulière s’interprète algébriquement en termes d’invariants de réseaux, relatifs à un réseau stable maximal que nous appelons « réseau de Levelt ». Nous obtenons en particulier un encadrement pour la somme des exposants des systèmes n’ayant que des singularités régulières sur 1 ( ).

Representation of the set of mild solutions to the relaxed semilinear differential inclusion

Irene Benedetti, Elena Panasenko (2006)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

We study the relation between the solutions set to a perturbed semilinear differential inclusion with nonconvex and non-Lipschitz right-hand side in a Banach space and the solutions set to the relaxed problem corresponding to the original one. We find the conditions under which the set of solutions for the relaxed problem coincides with the intersection of closures (in the space of continuous functions) of sets of δ-solutions to the original problem.

Resolvents, integral equations, limit sets

Theodore Allen Burton, D. P. Dwiggins (2010)

Mathematica Bohemica

In this paper we study a linear integral equation x ( t ) = a ( t ) - 0 t C ( t , s ) x ( s ) d s , its resolvent equation R ( t , s ) = C ( t , s ) - s t C ( t , u ) R ( u , s ) d u , the variation of parameters formula x ( t ) = a ( t ) - 0 t R ( t , s ) a ( s ) d s , and a perturbed equation. The kernel, C ( t , s ) , satisfies classical smoothness and sign conditions assumed in many real-world problems. We study the effects of perturbations of C and also the limit sets of the resolvent. These results lead us to the study of nonlinear perturbations.

Retracts, fixed point index and differential equations.

Rafael Ortega (2008)

RACSAM

Some problems in differential equations evolve towards Topology from an analytical origin. Two such problems will be discussed: the existence of solutions asymptotic to the equilibrium and the stability of closed orbits of Hamiltonian systems. The theory of retracts and the fixed point index have become useful tools in the study of these questions.

Currently displaying 1 – 20 of 25

Page 1 Next