Page 1 Next

Displaying 1 – 20 of 30

Showing per page

Decaying Regularly Varying Solutions of Third-order Differential Equations with a Singular Nonlinearity

Ivana Kučerová (2014)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

This paper is concerned with asymptotic analysis of strongly decaying solutions of the third-order singular differential equation x ' ' ' + q ( t ) x - γ = 0 , by means of regularly varying functions, where γ is a positive constant and q is a positive continuous function on [ a , ) . It is shown that if q is a regularly varying function, then it is possible to establish necessary and sufficient conditions for the existence of slowly varying solutions and regularly varying solutions of (A) which decrease to 0 as t and to acquire...

Decentralized control and synchronization of time-varying complex dynamical network

Wei-Song Zhong, Jovan D. Stefanovski, Georgi M. Dimirovski, Jun Zhao (2009)

Kybernetika

A new class of controlled time-varying complex dynamical networks with similarity is investigated and a decentralized holographic-structure controller is designed to stabilize the network asymptotically at its equilibrium states. The control design is based on the similarity assumption for isolated node dynamics and the topological structure of the overall network. Network synchronization problems, both locally and globally, are considered on the ground of decentralized control approach. Each sub-controller...

Decoupling normalizing transformations and local stabilization of nonlinear systems

S. Nikitin (1996)

Mathematica Bohemica

The existence of the normalizing transformation completely decoupling the stable dynamic from the center manifold dynamic is proved. A numerical procedure for the calculation of the asymptotic series for the decoupling normalizing transformation is proposed. The developed method is especially important for the perturbation theory of center manifold and, in particular, for the local stabilization theory. In the paper some sufficient conditions for local stabilization are given.

Delay dependent complex-valued bidirectional associative memory neural networks with stochastic and impulsive effects: An exponential stability approach

Chinnamuniyandi Maharajan, Chandran Sowmiya, Changjin Xu (2024)

Kybernetika

This paper investigates the stability in an exponential sense of complex-valued Bidirectional Associative Memory (BAM) neural networks with time delays under the stochastic and impulsive effects. By utilizing the contracting mapping theorem, the existence and uniqueness of the equilibrium point for the proposed complex-valued neural networks are verified. Moreover, based on the Lyapunov - Krasovskii functional construction, matrix inequality techniques and stability theory, some novel time-delayed...

Delay Model of Hematopoietic Stem Cell Dynamics: Asymptotic Stability and Stability Switch

F. Crauste (2009)

Mathematical Modelling of Natural Phenomena

A nonlinear system of two delay differential equations is proposed to model hematopoietic stem cell dynamics. Each equation describes the evolution of a sub-population, either proliferating or nonproliferating. The nonlinearity accounting for introduction of nonproliferating cells in the proliferating phase is assumed to depend upon the total number of cells. Existence and stability of steady states are investigated. A Lyapunov functional is built to obtain the global asymptotic stability of the...

Determining the domain of attraction of hybrid non–linear systems using maximal Lyapunov functions

Szabolcs Rozgonyi, Katalin M. Hangos, Gábor Szederkényi (2010)

Kybernetika

In this article a method is presented to find systematically the domain of attraction (DOA) of hybrid non-linear systems. It has already been shown that there exists a sequence of special kind of Lyapunov functions V n in a rational functional form approximating a maximal Lyapunov function V M that can be used to find an estimation for the DOA. Based on this idea, an improved method has been developed and implemented in a Mathematica-package to find such Lyapunov functions V n for a class of hybrid (piecewise...

Deterministic Chaos vs. Stochastic Fluctuation in an Eco-epidemic Model

P.S. Mandal, M. Banerjee (2012)

Mathematical Modelling of Natural Phenomena

An eco-epidemiological model of susceptible Tilapia fish, infected Tilapia fish and Pelicans is investigated by several author based upon the work initiated by Chattopadhyay and Bairagi (Ecol. Model., 136, 103–112, 2001). In this paper, we investigate the dynamics of the same model by considering different parameters involved with the model as bifurcation parameters in details. Considering the intrinsic growth rate of susceptible Tilapia fish as bifurcation parameter, we demonstrate the period doubling...

Differential conditions to verify the Jacobian Conjecture

Ludwik M. Drużkowski, Halszka K. Tutaj (1992)

Annales Polonici Mathematici

Let F be a polynomial mapping of ℝ², F(O) = 0. In 1987 Meisters and Olech proved that the solution y(·) = 0 of the autonomous system of differential equations ẏ = F(y) is globally asymptotically stable provided that the jacobian of F is everywhere positive and the trace of the matrix of the differential of F is everywhere negative. In particular, the mapping F is then injective. We give an n-dimensional generalization of this result.

Drive network to a desired orbit by pinning control

Quanjun Wu, Hua Zhang (2015)

Kybernetika

The primary objective of the present paper is to develop an approach for analyzing pinning synchronization stability in a complex delayed dynamical network with directed coupling. Some simple yet generic criteria for pinning such coupled network are derived analytically. Compared with some existing works, the primary contribution is that the synchronization manifold could be chosen as a weighted average of all the nodes states in the network for the sake of practical control tactics, which displays...

Dynamic analysis of an impulsive differential equation with time-varying delays

Ying Li, Yuanfu Shao (2014)

Applications of Mathematics

An impulsive differential equation with time varying delay is proposed in this paper. By using some analysis techniques with combination of coincidence degree theory, sufficient conditions for the permanence, the existence and global attractivity of positive periodic solution are established. The results of this paper improve and generalize some previously known results.

Dynamical behavior of Volterra model with mutual interference concerning IPM

Yujuan Zhang, Bing Liu, Lansun Chen (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

A Volterra model with mutual interference concerning integrated pest management is proposed and analyzed. By using Floquet theorem and small amplitude perturbation method and comparison theorem, we show the existence of a globally asymptotically stable pest-eradication periodic solution. Further, we prove that when the stability of pest-eradication periodic solution is lost, the system is permanent and there exists a locally stable positive periodic solution which arises from the pest-eradication...

Dynamical behavior of Volterra model with mutual interference concerning IPM

Yujuan Zhang, Bing Liu, Lansun Chen (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

A Volterra model with mutual interference concerning integrated pest management is proposed and analyzed. By using Floquet theorem and small amplitude perturbation method and comparison theorem, we show the existence of a globally asymptotically stable pest-eradication periodic solution. Further, we prove that when the stability of pest-eradication periodic solution is lost, the system is permanent and there exists a locally stable positive periodic solution which arises from the pest-eradication...

Currently displaying 1 – 20 of 30

Page 1 Next