Almost sure exponential stability of neutral differential difference equations with damped stochastic perturbations.
In this paper, we present an analysis for the stability of a differential equation with state-dependent delay. We establish existence and uniqueness of solutions of differential equation with delay term [...] τ(u(t))=a+bu(t)c+bu(t). Moreover, we put the some restrictions for the positivity of delay term τ(u(t)) Based on the boundedness of delay term, we obtain stability criterion in terms of the parameters of the equation.
The paper presents overview of applications of A. M. Lyapunov’s direct method to stability investigation of systems with argument delay. Methods of building Lyapunov-Krasovskiy funcionals for linear systems with constant coefficients are considered. Lyapunov quadratic forms are used to obtain applicable methods for stability investigation and estimation of solution convergence for linear stationary systems, as well as non-linear control systems and systems with quadratic and rational right hand...
We study a mathematical model which was originally suggested by Greenhalgh and Das and takes into account the delay in the recruitment of infected persons. The stability of the equilibria are also discussed. In addition, we show that the introduction of a time delay in the transmission term can destabilize the system and periodic solutions can arise by Hopf bifurcation.
A possible control strategy against the spread of an infectious disease is the treatment with antimicrobials that are given prophylactically to those that had contact with an infective person. The treatment continues until recovery or until it becomes obvious that there was no infection in the first place. The model considers susceptible, treated uninfected exposed, treated infected, (untreated) infectious, and recovered individuals. The overly optimistic assumptions are made that treated uninfected...
In this paper we have considered a nonlinear and nonautonomous stage-structured HIV/AIDS epidemic model with an imperfect HIV vaccine, varying total population size and distributed time delay to become infectious due to intracellular delay between initial infection of a cell by HIV and the release of new virions. Here, we have established some sufficient conditions on the permanence and extinction of the disease by using inequality analytical technique....
The objective of this work is the application of Krasnosel'skii's fixed point technique to prove the existence of periodic solutions of a system of coupled nonlinear integro-differential equations with variable delays. An example is given to illustrate this work.
We discuss how distributed delays arise in biological models and review the literature on such models. We indicate why it is important to keep the distributions in a model as general as possible. We then demonstrate, through the analysis of a particular example, what kind of information can be gained with only minimal information about the exact distribution of delays. In particular we show that a distribution independent stability region may be obtained in a similar way that delay independent...
It is considered the mathematical model of a benchmark hydroelectric power plant containing a water reservoir (lake), two water conduits (the tunnel and the turbine penstock), the surge tank and the hydraulic turbine; all distributed (Darcy-Weisbach) and local hydraulic losses are neglected,the only energy dissipator remains the throttling of the surge tank. Exponential stability would require asymptotic stability of the difference operator associated to the model. However in this case this stability...