Displaying 1121 – 1140 of 1832

Showing per page

On the oscillation of third-order quasi-linear neutral functional differential equations

Ethiraju Thandapani, Tongxing Li (2011)

Archivum Mathematicum

The aim of this paper is to study asymptotic properties of the third-order quasi-linear neutral functional differential equation [ a ( t ) ( [ x ( t ) + p ( t ) x ( δ ( t ) ) ] ' ' ) α ] ' + q ( t ) x α ( τ ( t ) ) = 0 , E where α > 0 , 0 p ( t ) p 0 < and δ ( t ) t . By using Riccati transformation, we establish some sufficient conditions which ensure that every solution of () is either oscillatory or converges to zero. These results improve some known results in the literature. Two examples are given to illustrate the main results.

On the relation of delay equations to first-order hyperbolic partial differential equations

Iasson Karafyllis, Miroslav Krstic (2014)

ESAIM: Control, Optimisation and Calculus of Variations

This paper establishes the equivalence between systems described by a single first-order hyperbolic partial differential equation and systems described by integral delay equations. System-theoretic results are provided for both classes of systems (among them converse Lyapunov results). The proposed framework can allow the study of discontinuous solutions for nonlinear systems described by a single first-order hyperbolic partial differential equation under the effect of measurable inputs acting on...

Currently displaying 1121 – 1140 of 1832