Displaying 1581 – 1600 of 1832

Showing per page

Stability of retarded systems with slowly varying coefficient

Michael Iosif Gil (2012)

ESAIM: Control, Optimisation and Calculus of Variations

The “freezing” method for ordinary differential equations is extended to multivariable retarded systems with distributed delays and slowly varying coefficients. Explicit stability conditions are derived. The main tool of the paper is a combined usage of the generalized Bohl-Perron principle and norm estimates for the fundamental solutions of the considered equations.

Stability of retarded systems with slowly varying coefficient

Michael Iosif Gil (2012)

ESAIM: Control, Optimisation and Calculus of Variations

The “freezing” method for ordinary differential equations is extended to multivariable retarded systems with distributed delays and slowly varying coefficients. Explicit stability conditions are derived. The main tool of the paper is a combined usage of the generalized Bohl-Perron principle and norm estimates for the fundamental solutions of the considered equations.

Stability of unique pseudo almost periodic solutions with measure

Boulbaba Ghanmi, Mohsen Miraoui (2020)

Applications of Mathematics

By means of the fixed-point methods and the properties of the μ -pseudo almost periodic functions, we prove the existence, uniqueness, and exponential stability of the μ -pseudo almost periodic solutions for some models of recurrent neural networks with mixed delays and time-varying coefficients, where μ is a positive measure. A numerical example is given to illustrate our main results.

Currently displaying 1581 – 1600 of 1832