Displaying 161 – 180 of 1830

Showing per page

Approximation of solutions of a difference-differential equation

B. G. Pachpatte (2010)

Archivum Mathematicum

In the present paper we study the approximate solutions of a certain difference-differential equation under the given initial conditions. The well known Gronwall-Bellman integral inequality is used to establish the results. Applications to a Volterra type difference-integral equation are also given.

Approximation of the Zakai equation in a nonlinear filtering problem with delay

Krystyna Twardowska, Tomasz Marnik, Monika Pasławska-Południak (2003)

International Journal of Applied Mathematics and Computer Science

A nonlinear filtering problem with delays in the state and observation equations is considered. The unnormalized conditional probability density of the filtered diffusion process satisfies the so-called Zakai equation and solves the nonlinear filtering problem. We examine the solution of the Zakai equation using an approximation result. Our theoretical deliberations are illustrated by a numerical example.

Around certain critical cases in stability studies in hydraulic engineering

Vladimir Răsvan (2023)

Archivum Mathematicum

It is considered the mathematical model of a benchmark hydroelectric power plant containing a water reservoir (lake), two water conduits (the tunnel and the turbine penstock), the surge tank and the hydraulic turbine; all distributed (Darcy-Weisbach) and local hydraulic losses are neglected,the only energy dissipator remains the throttling of the surge tank. Exponential stability would require asymptotic stability of the difference operator associated to the model. However in this case this stability...

Asymptotic and exponential decay in mean square for delay geometric Brownian motion

Jan Haškovec (2022)

Applications of Mathematics

We derive sufficient conditions for asymptotic and monotone exponential decay in mean square of solutions of the geometric Brownian motion with delay. The conditions are written in terms of the parameters and are explicit for the case of asymptotic decay. For exponential decay, they are easily resolvable numerically. The analytical method is based on construction of a Lyapunov functional (asymptotic decay) and a forward-backward estimate for the square mean (exponential decay).

Asymptotic Behavior of a Discrete Maturity Structured System of Hematopoietic Stem Cell Dynamics with Several Delays

M. Adimy, F. Crauste, A. El Abdllaoui (2010)

Mathematical Modelling of Natural Phenomena

We propose and analyze a mathematical model of hematopoietic stem cell dynamics. This model takes into account a finite number of stages in blood production, characterized by cell maturity levels, which enhance the difference, in the hematopoiesis process, between dividing cells that differentiate (by going to the next stage) and dividing cells that keep the same maturity level (by staying in the same stage). It is described by a system of n nonlinear differential equations with n delays. We study...

Currently displaying 161 – 180 of 1830