Displaying 381 – 400 of 497

Showing per page

Sturm-Liouville systems are Riesz-spectral systems

Cédric Delattre, Denis Dochain, Joseph Winkin (2003)

International Journal of Applied Mathematics and Computer Science

The class of Sturm-Liouville systems is defined. It appears to be a subclass of Riesz-spectral systems, since it is shown that the negative of a Sturm-Liouville operator is a Riesz-spectral operator on L^2(a,b) and the infinitesimal generator of a C_0-semigroup of bounded linear operators.

The basis property in L p of the boundary value problem rationally dependent on the eigenparameter

N. B. Kerimov, Y. N. Aliyev (2006)

Studia Mathematica

We consider a Sturm-Liouville operator with boundary conditions rationally dependent on the eigenparameter. We study the basis property in L p of the system of eigenfunctions corresponding to this operator. We determine the explicit form of the biorthogonal system. Using this we establish a theorem on the minimality of the part of the system of eigenfunctions. For the basisness in L₂ we prove that the system of eigenfunctions is quadratically close to trigonometric systems. For the basisness in L p ...

The distance between fixed points of some pairs of maps in Banach spaces and applications to differential systems

Cristinel Mortici (2006)

Czechoslovak Mathematical Journal

Let T be a γ -contraction on a Banach space Y and let S be an almost γ -contraction, i.e. sum of an ε , γ -contraction with a continuous, bounded function which is less than ε in norm. According to the contraction principle, there is a unique element u in Y for which u = T u . If moreover there exists v in Y with v = S v , then we will give estimates for u - v . Finally, we establish some inequalities related to the Cauchy problem.

The existence of solution for boundary value problems for differential equations with deviating arguments and p-Laplacian

Bing Liu, Jianshe Yu (2000)

Annales Polonici Mathematici

We consider a boundary value problem for a differential equation with deviating arguments and p-Laplacian: - ( ϕ p ( x ' ) ) ' + d / d t g r a d F ( x ) + g ( t , x ( t ) , x ( δ ( t ) ) , x’(t), x’(τ(t))) = 0, t ∈ [0,1]; x ( t ) = φ ̲ ( t ) , t ≤ 0; x ( t ) = φ ¯ ( t ) , t ≥ 1. An existence result is obtained with the help of the Leray-Schauder degree theory, with no restriction on the damping forces d/dt grad F(x).

Currently displaying 381 – 400 of 497