Unicité pour certains problèmes de Cauchy non-linéaires, complexes, du premier ordre
This paper concerns with the finite volume scheme for nonlinear tensor diffusion in image processing. First we provide some basic information on this type of diffusion including a construction of its diffusion tensor. Then we derive a semi-implicit scheme with the help of so-called diamond-cell method (see [Coirier1] and [Coirier2]). Further, we prove existence and uniqueness of a discrete solution given by our scheme. The proof is based on a gradient bound in the tangential direction by a gradient...
We study the Gevrey regularity down to t = 0 of solutions to the initial value problem for a semilinear heat equation . The approach is based on suitable iterative fixed point methods in based Banach spaces with anisotropic Gevrey norms with respect to the time and the space variables. We also construct explicit solutions uniformly analytic in t ≥ 0 and x ∈ ℝⁿ for some conservative nonlinear terms with symmetries.
We consider the first initial boundary value problem for nonautonomous quasilinear degenerate parabolic equations involving weighted p-Laplacian operators, in which the nonlinearity satisfies the polynomial condition of arbitrary order and the external force is normal. Using the asymptotic a priori estimate method, we prove the existence of uniform attractors for this problem. The results, in particular, improve some recent ones for nonautonomous p-Laplacian equations.
Let , be elliptic operators with Hölder continuous coefficients on a bounded domain of class . There is a constant depending only on the Hölder norms of the coefficients of and its constant of ellipticity such thatwhere (resp. ) are the Green functions of (resp. ) on .
This paper is devoted to studying the effects of a vanishing structural damping on the controllability properties of the one dimensional linear beam equation. The vanishing term depends on a small parameter . We study the boundary controllability properties of this perturbed equation and the behavior of its boundary controls as goes to zero. It is shown that for any time sufficiently large but independent of and for each initial data in a suitable space there exists a uniformly bounded...
This article considers the linear 1-d Schrödinger equation in (0,π) perturbed by a vanishing viscosity term depending on a small parameter ε > 0. We study the boundary controllability properties of this perturbed equation and the behavior of its boundary controls vε as ε goes to zero. It is shown that, for any time T sufficiently large but independent of ε and for each initial datum in H−1(0,π), there exists a uniformly...
This article considers the linear 1-d Schrödinger equation in (0,π) perturbed by a vanishing viscosity term depending on a small parameter ε > 0. We study the boundary controllability properties of this perturbed equation and the behavior of its boundary controls vε as ε goes to zero. It is shown that, for any time T sufficiently large but independent of ε and for each initial datum in H−1(0,π), there exists a uniformly...
For the efficient numerical solution of indefinite linear systems arising from curl conforming edge element approximations of the time-harmonic Maxwell equation, we consider local multigrid methods (LMM) on adaptively refined meshes. The edge element discretization is done by the lowest order edge elements of Nédélec’s first family. The LMM features local hybrid Hiptmair smoothers of Jacobi and Gauss–Seidel type which are performed only on basis functions associated with newly created edges/nodal...
For the efficient numerical solution of indefinite linear systems arising from curl conforming edge element approximations of the time-harmonic Maxwell equation, we consider local multigrid methods (LMM) on adaptively refined meshes. The edge element discretization is done by the lowest order edge elements of Nédélec’s first family. The LMM features local hybrid Hiptmair smoothers of Jacobi and Gauss–Seidel type which are performed only on basis functions associated with newly created edges/nodal...