Displaying 2261 – 2280 of 2283

Showing per page

Attractors of Strongly Dissipative Systems

A. G. Ramm (2009)

Bulletin of the Polish Academy of Sciences. Mathematics

A class of infinite-dimensional dissipative dynamical systems is defined for which there exists a unique equilibrium point, and the rate of convergence to this point of the trajectories of a dynamical system from the above class is exponential. All the trajectories of the system converge to this point as t → +∞, no matter what the initial conditions are. This class consists of strongly dissipative systems. An example of such systems is provided by passive systems in network theory (see, e.g., MR0601947...

Aubry sets and the differentiability of the minimal average action in codimension one

Ugo Bessi (2009)

ESAIM: Control, Optimisation and Calculus of Variations

Let (x,u,∇u) be a Lagrangian periodic of period 1 in x1,...,xn,u. We shall study the non self intersecting functions u: Rn R minimizing ; non self intersecting means that, if u(x0 + k) + j = u(x0) for some x0∈Rn and (k , j) ∈Zn × Z, then u(x) = u(x + k) + j x. Moser has shown that each of these functions is at finite distance from a plane u = ρ · x and thus has an average slope ρ; moreover, Senn has proven that it is possible to define the average action of u, which is usually called β ( ρ ) since...

Autowaves in the Model of Infiltrative Tumour Growth with Migration-Proliferation Dichotomy

A.V. Kolobov, V.V. Gubernov, A.A. Polezhaev (2011)

Mathematical Modelling of Natural Phenomena

A mathematical model of infiltrative tumour growth is investigated taking into account transitions between two possible states of malignant cells: proliferation and migration. These transitions are considered to depend on oxygen level in a threshold manner where high oxygen concentration allows cell proliferation, while concentration below a certain critical value induces cell migration. The infiltrative tumour spreading rate dependence on model parameters is obtained. It is shown that the tumour...

Averaging of gradient in the space of linear triangular and bilinear rectangular finite elements

Josef Dalík, Václav Valenta (2013)

Open Mathematics

An averaging method for the second-order approximation of the values of the gradient of an arbitrary smooth function u = u(x 1, x 2) at the vertices of a regular triangulation T h composed both of rectangles and triangles is presented. The method assumes that only the interpolant Πh[u] of u in the finite element space of the linear triangular and bilinear rectangular finite elements from T h is known. A complete analysis of this method is an extension of the complete analysis concerning the finite...

Averaging techniques and oscillation of quasilinear elliptic equations

Zhi-Ting Xu, Bao-Guo Jia, Shao-Yuan Xu (2004)

Annales Polonici Mathematici

By using averaging techniques, some oscillation criteria for quasilinear elliptic differential equations of second order i , j = 1 N D i [ A i j ( x ) | D y | p - 2 D j y ] + p ( x ) f ( y ) = 0 are obtained. These results extend and generalize the criteria for linear differential equations due to Kamenev, Philos and Wong.

Currently displaying 2261 – 2280 of 2283