Regularity of generalized Navier-Stokes equations in terms of direction of the velocity.
We study regularity properties of the free boundary for the thin one-phase problem which consists of minimizing the energy functional among all functions which are fixed on .
I am presenting a survey of regularity results for both minima of variational integrals, and solutions to non-linear elliptic, and sometimes parabolic, systems of partial differential equations. I will try to take the reader to the Dark Side...
We prove the hypoellipticity for systems of Hörmander type with constant coefficients in Carnot groups of step 2. This result is used to implement blow-up methods and prove partial regularity for local minimizers of non-convex functionals, and for solutions of non-linear systems which appear in the study of non-isotropic metric structures with scalings. We also establish estimates of the Hausdorff dimension of the singular set.
In this paper, we prove some regularity results for the boundary of an open subset of which minimizes the Dirichlet’s energy among all open subsets with prescribed volume. In particular we show that, when the volume constraint is “saturated”, the reduced boundary of the optimal shape (and even the whole boundary in dimension 2) is regular if the state function is nonnegative.
In this paper, we prove some regularity results for the boundary of an open subset of which minimizes the Dirichlet's energy among all open subsets with prescribed volume. In particular we show that, when the volume constraint is “saturated”, the reduced boundary of the optimal shape (and even the whole boundary in dimension 2) is regular if the state function is nonnegative.
In the context of the weak solutions of the Navier-Stokes equations we study the regularity of the pressure and its derivatives in the space-time neighbourhood of regular points. We present some global and local conditions under which the regularity is further improved.
We prove boundedness and continuity for solutions to the Dirichlet problem for the equation where the left-hand side is a Leray-Lions operator from into with , is a Carathéodory function which grows like and is a finite Radon measure. We prove that renormalized solutions, though not globally bounded, are Hölder-continuous far from the support of .
We consider an initial-boundary problem for a sixth order nonlinear parabolic equation, which arises in oil-water-surfactant mixtures. Using Schauder type estimates and Campanato spaces, we prove the global existence of classical solutions for the problem in two space dimensions.