Displaying 241 – 260 of 555

Showing per page

L’existence et le comportement asymptotique des solutions d’ondes progressives pour une équation fortement non linéaire

Ahmed Hamydy (2008)

Annales mathématiques Blaise Pascal

Dans ce papier on étudie l’existence et le comportement asymptotique des solutions de type ondes progressives à propagations finies de l’équation U t = A U x p - 2 U x x + K U q . On prouve que ces solutions existent si et seulement si q < 1 et c < 0 ou bien q p - 1 et c > 0 . On donne aussi le comportement asymptotique de ces solutions.

Lie symmetry of a class of nonlinear boundary value problems with free boundaries

Roman Cherniha, Sergii Kovalenko (2011)

Banach Center Publications

A class of (1 + 1)-dimensional nonlinear boundary value problems (BVPs), modeling the process of melting and evaporation of solid materials, is studied by means of the classical Lie symmetry method. A new definition of invariance in Lie's sense for BVP is presented and applied to the class of BVPs in question.

Lieb–Thirring inequalities on the half-line with critical exponent

Tomas Ekholm, Rupert Frank (2008)

Journal of the European Mathematical Society

We consider the operator - d 2 / d r 2 - V in L 2 ( + ) with Dirichlet boundary condition at the origin. For the moments of its negative eigenvalues we prove the bound tr ( - d 2 / d r 2 - V ) - γ C γ , α + ( V ( r ) - 1 / ( 4 r 2 ) ) + γ + ( 1 + α ) / 2 r α d r for any α [ 0 , 1 ) and γ ( 1 - α ) / 2 . This includes a Lieb-Thirring inequality in the critical endpoint case.

Lieb–Thirring inequalities with improved constants

Jean Dolbeault, Ari Laptev, Michael Loss (2008)

Journal of the European Mathematical Society

Following Eden and Foias we obtain a matrix version of a generalised Sobolev inequality in one dimension. This allows us to improve on the known estimates of best constants in Lieb–Thirring inequalities for the sum of the negative eigenvalues for multidimensional Schrödinger operators.

Lifshitz tails for some non monotonous random models

Frédéric Klopp, Shu Nakamura (2007/2008)

Séminaire Équations aux dérivées partielles

In this talk, we describe some recent results on the Lifshitz behavior of the density of states for non monotonous random models. Non monotonous means that the random operator is not a monotonous function of the random variables. The models we consider will mainly be of alloy type but in some cases we also can apply our methods to random displacement models.

Currently displaying 241 – 260 of 555