Les équations elliptiques non linéaires
Dans cet article, on étudie le système de Boussinesq décrivant le phénomène de convection dans un fluide incompressible et visqueux. Ce système est composé des équations de Navier-Stokes incompressibles avec un terme de force verticale dont l’amplitude est transportée sans dissipationpar le flot du champ de vitesses. On montre que les résultats classiques pour le système de Navier-Stokes standard demeurent vrais pour le système de Boussinesq bien qu’il n’y ait pas d’amortissement sur le terme de...
We announce some results concerning the Dirichlet problem for the Levi-equation in . We consider for the sake of simplicity the case .
Let , let be a hypersurface of , be a submanifold of . Denote by the Levi form of at . In a previous paper [3] two numbers , are defined; for they are the numbers of positive and negative eigenvalues for . For , , we show here that are still the numbers of positive and negative eigenvalues for when restricted to . Applications to the concentration in degree for microfunctions at the boundary are given.
Dans ce papier on étudie l’existence et le comportement asymptotique des solutions de type ondes progressives à propagations finies de l’équation . On prouve que ces solutions existent si et seulement si et ou bien et . On donne aussi le comportement asymptotique de ces solutions.