The non-homogeneous Vekua equation. (L'équation non-homogène de Vekua.)
In this article, we study small perturbations of the family of Friedmann-Lemaître-Robertson-Walker cosmological background solutions to the coupled Euler-Einstein system with a positive cosmological constant in spacetime dimensions. The background solutions model an initially uniform quiet fluid of positive energy density evolving in a spacetime undergoing exponentially accelerated expansion. Our nonlinear analysis shows that under the equation of state , the background metric + fluid solutions...
We establish two new formulations of the membrane problem by working in the space of -Young measures and -varifolds. The energy functional related to these formulations is obtained as a limit of the formulation of the behavior of a thin layer for a suitable variational convergence associated with the narrow convergence of Young measures and with some weak convergence of varifolds. The interest of the first formulation is to encode the oscillation informations on the gradients minimizing sequences...
We establish two new formulations of the membrane problem by working in the space of -Young measures and -varifolds. The energy functional related to these formulations is obtained as a limit of the 3d formulation of the behavior of a thin layer for a suitable variational convergence associated with the narrow convergence of Young measures and with some weak convergence of varifolds. The interest of the first formulation is to encode the oscillation informations on the gradients minimizing...
We prove sharp inequalities in weighted Sobolev spaces. Our approach is based on the blow-up technique applied to some nonlinear Neumann problems.
We investigate the effect of admitting signed measures as a datum at the scalar Chern-Simons equation with the Dirichlet boundary condition. Approximating by a sequence of functions or finite signed measures such that this equation has a solution for each , we are interested in establishing the convergence of the sequence to a function and describing the form of the measure which appears on the right-hand side of the scalar Chern-Simons equation solved by .
We study a semilinear equation with derivatives satisfying a null condition on slowly rotating Kerr spacetimes. We prove that given sufficiently small initial data, the solution exists globally in time and decays with a quantitative rate to the trivial solution. The proof uses the robust vector field method. It makes use of the decay properties of the linear wave equation on Kerr spacetime, in particular the improved decay rates in the region .
We study the theoretical and numerical coupling of two hyperbolic systems of conservation laws at a fixed interface. As already proven in the scalar case, the coupling preserves in a weak sense the continuity of the solution at the interface without imposing the overall conservativity of the coupled model. We develop a detailed analysis of the coupling in the linear case. In the nonlinear case, we either use a linearized approach or a coupling method based on the solution of a Riemann problem. We...
We study the theoretical and numerical coupling of two hyperbolic systems of conservation laws at a fixed interface. As already proven in the scalar case, the coupling preserves in a weak sense the continuity of the solution at the interface without imposing the overall conservativity of the coupled model. We develop a detailed analysis of the coupling in the linear case. In the nonlinear case, we either use a linearized approach or a coupling method based on the solution of a Riemann problem....