Cauchy's problem in the large for nonlinear hyperbolic equations and for the Korteweg-de Vries equation
2000 Mathematics Subject Classification: 35A15, 44A15, 26A33The paper is devoted to the study of the Cauchy-type problem for the differential equation [...] involving the Riemann-Liouville partial fractional derivative of order α > 0 [...] and the Laplace operator.
In this work we introduce a new class of lowest order methods for diffusive problems on general meshes with only one unknown per element. The underlying idea is to construct an incomplete piecewise affine polynomial space with optimal approximation properties starting from values at cell centers. To do so we borrow ideas from multi-point finite volume methods, although we use them in a rather different context. The incomplete polynomial space replaces classical complete polynomial spaces in discrete...
In this work we introduce a new class of lowest order methods for diffusive problems on general meshes with only one unknown per element. The underlying idea is to construct an incomplete piecewise affine polynomial space with optimal approximation properties starting from values at cell centers. To do so we borrow ideas from multi-point finite volume methods, although we use them in a rather different context. The incomplete polynomial space replaces classical complete polynomial spaces...
In this paper we present two versions of the central local discontinuous Galerkin (LDG) method on overlapping cells for solving diffusion equations, and provide their stability analysis and error estimates for the linear heat equation. A comparison between the traditional LDG method on a single mesh and the two versions of the central LDG method on overlapping cells is also made. Numerical experiments are provided to validate the quantitative conclusions from the analysis and to support conclusions...
In this paper we present two versions of the central local discontinuous Galerkin (LDG) method on overlapping cells for solving diffusion equations, and provide their stability analysis and error estimates for the linear heat equation. A comparison between the traditional LDG method on a single mesh and the two versions of the central LDG method on overlapping cells is also made. Numerical experiments are provided to validate the quantitative conclusions from the analysis and to support conclusions...
We introduce a family of new second-order Godunov-type central schemes for one-dimensional systems of conservation laws. They are a less dissipative generalization of the central-upwind schemes, proposed in [A. Kurganov et al., submitted to SIAM J. Sci. Comput.], whose construction is based on the maximal one-sided local speeds of propagation. We also present a recipe, which helps to improve the resolution of contact waves. This is achieved by using the partial characteristic decomposition,...
We present a family of high-order, essentially non-oscillatory, central schemes for approximating solutions of hyperbolic systems of conservation laws. These schemes are based on a new centered version of the Weighed Essentially Non-Oscillatory (WENO) reconstruction of point-values from cell-averages, which is then followed by an accurate approximation of the fluxes via a natural continuous extension of Runge-Kutta solvers. We explicitly construct the third and fourth-order scheme and demonstrate...
We present one- and two-dimensional central-upwind schemes for approximating solutions of the Saint-Venant system with source terms due to bottom topography. The Saint-Venant system has steady-state solutions in which nonzero flux gradients are exactly balanced by the source terms. It is a challenging problem to preserve this delicate balance with numerical schemes. Small perturbations of these states are also very difficult to compute. Our approach is based on extending semi-discrete central schemes...
We present one- and two-dimensional central-upwind schemes for approximating solutions of the Saint-Venant system with source terms due to bottom topography. The Saint-Venant system has steady-state solutions in which nonzero flux gradients are exactly balanced by the source terms. It is a challenging problem to preserve this delicate balance with numerical schemes. Small perturbations of these states are also very difficult to compute. Our approach is based on extending semi-discrete central...
We present a reduced basis offline/online procedure for viscous Burgers initial boundary value problem, enabling efficient approximate computation of the solutions of this equation for parametrized viscosity and initial and boundary value data. This procedure comes with a fast-evaluated rigorous error bound certifying the approximation procedure. Our numerical experiments show significant computational savings, as well as efficiency of the error bound.