Existence results for Hamiltonian elliptic systems with nonlinear boundary conditions.
In this paper we study the existence of solutions for quasilinear degenerated elliptic operators A(u) + g(x,u,∇u) = f, where A is a Leray-Lions operator from W01,p(Ω,ω) into its dual, while g(x,s,ξ) is a nonlinear term which has a growth condition with respect to ξ and no growth with respect to s, but it satisfies a sign condition on s. The right hand side f is assumed to belong either to W-1,p'(Ω,ω*) or to L1(Ω).
This work is concerned with the study of the flow of an incompressible viscoelastic fluid of White-Metzner type. These models lead to systems of partial differential equations that are evolutionary, are globally well posed. The objective of this article is to prove the local and global existence of solutions of these systems.
This paper is devoted to the existence of conformal metrics on with prescribed scalar curvature. We extend well known existence criteria due to Bahri-Coron.
We consider a two dimensional elastic body submitted to unilateral contact conditions, local friction and adhesion on a part of his boundary. After discretizing the variational formulation with respect to time we use a smoothing technique to approximate the friction term by an auxiliary problem. A shifting technique enables us to obtain the existence of incremental solutions with bounds independent of the regularization parameter. We finally obtain the existence of a quasistatic solution...