Existence results for elliptic systems involving critical Sobolev exponents.
In this paper we study the existence of solutions for quasilinear degenerated elliptic operators A(u) + g(x,u,∇u) = f, where A is a Leray-Lions operator from W01,p(Ω,ω) into its dual, while g(x,s,ξ) is a nonlinear term which has a growth condition with respect to ξ and no growth with respect to s, but it satisfies a sign condition on s. The right hand side f is assumed to belong either to W-1,p'(Ω,ω*) or to L1(Ω).
In this paper, we study the existence results for some parabolic equations with degenerate coercivity, singular lower order term depending on the gradient, and positive initial data in .