Displaying 141 – 160 of 876

Showing per page

Classical boundary value problems for integrable temperatures in a C 1 domain

Anna Grimaldi Piro, Francesco Ragnedda (1991)

Annales Polonici Mathematici

Abstract. We study a Neumann problem for the heat equation in a cylindrical domain with C 1 -base and data in h c 1 , a subspace of L 1. We derive our results, considering the action of an adjoint operator on B T M O C , a predual of h c 1 , and using known properties of this last space.

Classical global solutions of the initial boundary value problems for a class of nonlinear parabolic equations

Guo Wang Chen (1994)

Commentationes Mathematicae Universitatis Carolinae

The existence, uniqueness and regularities of the generalized global solutions and classical global solutions to the equation u t = - A ( t ) u x 4 + B ( t ) u x 2 + g ( u ) x 2 + f ( u ) x + h ( u x ) x + G ( u ) with the initial boundary value conditions u ( - , t ) = u ( , t ) = 0 , u x 2 ( - , t ) = u x 2 ( , t ) = 0 , u ( x , 0 ) = ϕ ( x ) , or with the initial boundary value conditions u x ( - , t ) = u x ( , t ) = 0 , u x 3 ( - , t ) = u x 3 ( , t ) = 0 , u ( x , 0 ) = ϕ ( x ) , are proved. Moreover, the asymptotic behavior of these solutions is considered under some conditions.

Classical PLS-spaces: spaces of distributions, real analytic functions and their relatives

Paweł Domański (2004)

Banach Center Publications

This paper is an extended version of an invited talk presented during the Orlicz Centenary Conference (Poznań, 2003). It contains a brief survey of applications to classical problems of analysis of the theory of the so-called PLS-spaces (in particular, spaces of distributions and real analytic functions). Sequential representations of the spaces and the theory of the functor Proj¹ are applied to questions like solvability of linear partial differential equations, existence of a solution depending...

Classical solutions for the equations modelling the motion of a ball in a bidimensional incompressible perfect fluid

Jaime H. Ortega, Lionel Rosier, Takéo Takahashi (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper we investigate the motion of a rigid ball in an incompressible perfect fluid occupying 2 . We prove the global in time existence and the uniqueness of the classical solution for this fluid-structure problem. The proof relies mainly on weighted estimates for the vorticity associated with the strong solution of a fluid-structure problem obtained by incorporating some dissipation.

Classical solutions for the equations modelling the motion of a ball in a bidimensional incompressible perfect fluid

Jaime H. Ortega, Lionel Rosier, Takéo Takahashi (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we investigate the motion of a rigid ball in an incompressible perfect fluid occupying 2 . We prove the global in time existence and the uniqueness of the classical solution for this fluid-structure problem. The proof relies mainly on weighted estimates for the vorticity associated with the strong solution of a fluid-structure problem obtained by incorporating some dissipation.

Classical solutions of parabolic equations in Hölder spaces

Eugenio Sinestrari (1983)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Sono dati nuovi teoremi di esistenza per soluzioni regolari di equazioni di evoluzione paraboliche astratte con applicazioni all'equazione del calore in spazi di funzioni holderiane e alle equazioni semilineari.

Currently displaying 141 – 160 of 876