Displaying 581 – 600 of 1607

Showing per page

Implicit difference methods for nonlinear first order partial functional differential systems

Elżbieta Puźniakowska-Gałuch (2010)

Applicationes Mathematicae

Initial problems for nonlinear hyperbolic functional differential systems are considered. Classical solutions are approximated by solutions of suitable quasilinear systems of difference functional equations. The numerical methods used are difference schemes which are implicit with respect to the time variable. Theorems on convergence of difference schemes and error estimates of approximate solutions are presented. The proof of the stability is based on a comparison technique with nonlinear estimates...

Indices of Orlicz spaces and some applications

Alberto Fiorenza, Miroslav Krbec (1997)

Commentationes Mathematicae Universitatis Carolinae

We study connections between the Boyd indices in Orlicz spaces and the growth conditions frequently met in various applications, for instance, in the regularity theory of variational integrals with non-standard growth. We develop a truncation method for computation of the indices and we also give characterizations of them in terms of the growth exponents and of the Jensen means. Applications concern variational integrals and extrapolation of integral operators.

Inégalités de résolvante pour l’opérateur de Schrödinger avec potentiel multipolaire critique

Thomas Duyckaerts (2006)

Bulletin de la Société Mathématique de France

On étudie un opérateur de la forme - Δ + V sur d , où V est un potentiel admettant plusieurs pôles en a / r 2 . Plus précisément, on démontre l’estimation de résolvante tronquée à hautes fréquences, classique dans les cas non-captifs, et qui implique l’effet régularisant standard pour l’équation de Schrödinger correspondante. La preuve est basée sur l’introduction d’une mesure de défaut micro-locale semi-classique. On démontre également, dans le même contexte, des inégalités de Strichartz pour l’équation de Schrödinger....

Initial boundary value problem for generalized Zakharov equations

Shujun You, Boling Guo, Xiaoqi Ning (2012)

Applications of Mathematics

This paper considers the existence and uniqueness of the solution to the initial boundary value problem for a class of generalized Zakharov equations in ( 2 + 1 ) dimensions, and proves the global existence of the solution to the problem by a priori integral estimates and the Galerkin method.

Instability of the eikonal equation and shape from shading

Ian Barnes, Kewei Zhang (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In the shape from shading problem of computer vision one attempts to recover the three-dimensional shape of an object or landscape from the shading on a single image. Under the assumptions that the surface is dusty, distant, and illuminated only from above, the problem reduces to that of solving the eikonal equation |Du|=f on a domain in 2 . Despite various existence and uniqueness theorems for smooth solutions, we show that this problem is unstable, which is catastrophic for general numerical algorithms. ...

Integral Transforms Method to Solve a Time-Space Fractional Diffusion Equation

Nikolova, Yanka, Boyadjiev, Lyubomir (2010)

Fractional Calculus and Applied Analysis

Mathematical Subject Classification 2010: 35R11, 42A38, 26A33, 33E12.The method of integral transforms based on using a fractional generalization of the Fourier transform and the classical Laplace transform is applied for solving Cauchy-type problem for the time-space fractional diffusion equation expressed in terms of the Caputo time-fractional derivative and a generalized Riemann-Liouville space-fractional derivative.

Currently displaying 581 – 600 of 1607