Previous Page 5

Displaying 81 – 87 of 87

Showing per page

Oscillations and concentrations in sequences of gradients

Martin Kružík, Agnieszka Kałamajska (2008)

ESAIM: Control, Optimisation and Calculus of Variations

We use DiPerna’s and Majda’s generalization of Young measures to describe oscillations and concentrations in sequences of gradients, { u k } , bounded in L p ( Ø ; m × n ) if p > 1 and Ω n is a bounded domain with the extension property in W 1 , p . Our main result is a characterization of those DiPerna-Majda measures which are generated by gradients of Sobolev maps satisfying the same fixed Dirichlet boundary condition. Cases where no boundary conditions nor regularity of Ω are required and links with lower semicontinuity results...

Oscillations and concentrations in sequences of gradients

Agnieszka Kałamajska, Martin Kružík (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We use DiPerna's and Majda's generalization of Young measures to describe oscillations and concentrations in sequences of gradients, { u k } , bounded in L p ( Ω ; m × n ) if p > 1 and Ω n is a bounded domain with the extension property in W 1 , p . Our main result is a characterization of those DiPerna-Majda measures which are generated by gradients of Sobolev maps satisfying the same fixed Dirichlet boundary condition. Cases where no boundary conditions nor regularity of Ω are required and links with lower semicontinuity...

Oscillations of a nonlinearly damped extensible beam

Eduard Feireisl, Leopold Herrmann (1992)

Applications of Mathematics

It is proved that any weak solution to a nonlinear beam equation is eventually globally oscillatory, i.e., there is a uniform oscillatory interval for large times.

Oscillations of anharmonic Fourier series and the wave equation.

Alain Haraux, Vilmos Komornik (1985)

Revista Matemática Iberoamericana

In this paper we have collected some partial results on the sign of u(t,x) where u is a (sufficiently regular) solution of⎧     utt + (-1)m Δmu = 0     (t,x) ∈ R x Ω⎨⎩     u|Γ = ... = Δm-1 u|Γ = 0     t ∈ R.These results rely on the study of a sign of almost periodic functions of a special form restricted to a bounded interval J.

Oscillations of higher order differential equations of neutral type

N. Parhi (2000)

Czechoslovak Mathematical Journal

In this paper, sufficient conditions have been obtained for oscillation of solutions of a class of n th order linear neutral delay-differential equations. Some of these results have been used to study oscillatory behaviour of solutions of a class of boundary value problems for neutral hyperbolic partial differential equations.

Oscillations of the solutions of nonlinear hyperbolic equations of neutral type.

D.P. Mishev, D.D. Bainov (1992)

Publicacions Matemàtiques

In this paper nonlinear hyperbolic equations of neutral type of a given form are considered, with certain boundary conditions. Under certain constraints on the coefficients of the equation and the boundary conditions, sufficient conditions for oscillation of the solutions of the problems considered are obtained.

Currently displaying 81 – 87 of 87

Previous Page 5